• Title/Summary/Keyword: 헬멧 인식

Search Result 14, Processing Time 0.017 seconds

Design of HMD Application for Personal Mobility Equipment using Deep Learning Object Recognition and Augmented Realism Techniques (딥러닝 객체 인식과 증강현실 기술을 적용한 개인 이동장치 HMD용 어플리케이션 설계)

  • Kim, Kang-Gyoo;Lee, JongMyeong;Yoo, Seoyeon;Chun, Seunghyun;Baek, JeongYoon;Ha, Ok-kyoon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.01a
    • /
    • pp.39-40
    • /
    • 2022
  • 최근 전동 킥보드, 전동휠, 전기 자전거 등 개인형 이동수단(Personal Mobility)의 보급이 늘면서 관련 인명 교통사고가 급증하고 있다. 본 논문에서는 개인형 이동수단의 사용위험 및 사고 감소를 목적으로, 딥러닝 객체탐지 기술을 적용하여 다양한 위험요소를 증강현실 기술을 기반으로 한 HMD(Helmet mounted display)에 표시하는 '딥러닝 객체 인식과 증강현실을 적용한 개인 이동장치를 위한 HMD(Helmet Mounted Display) 어플리케이션'을 설계한다. 제시하는 방법은 실시간으로 수집된 전방의 실시간 영상 정보를 객체 탐지 알고리즘을 통해 위험요소 및 안전한 주행을 보조하는 객체를 감지하고 증강현실을 적용해 사용자에게 적절한 운전 보조장치 및 기능을 제공한다.

  • PDF

Gesture Recognition based on Mixture-of-Experts for Wearable User Interface of Immersive Virtual Reality (몰입형 가상현실의 착용식 사용자 인터페이스를 위한 Mixture-of-Experts 기반 제스처 인식)

  • Yoon, Jong-Won;Min, Jun-Ki;Cho, Sung-Bae
    • Journal of the HCI Society of Korea
    • /
    • v.6 no.1
    • /
    • pp.1-8
    • /
    • 2011
  • As virtual realty has become an issue of providing immersive services, in the area of virtual realty, it has been actively investigated to develop user interfaces for immersive interaction. In this paper, we propose a gesture recognition based immersive user interface by using an IR LED embedded helmet and data gloves in order to reflect the user's movements to the virtual reality environments effectively. The system recognizes the user's head movements by using the IR LED embedded helmet and IR signal transmitter, and the hand gestures with the data gathered from data gloves. In case of hand gestures recognition, it is difficult to recognize accurately with the general recognition model because there are various hand gestures since human hands consist of many articulations and users have different hand sizes and hand movements. In this paper, we applied the Mixture-of-Experts based gesture recognition for various hand gestures of multiple users accurately. The movement of the user's head is used to change the perspection in the virtual environment matching to the movement in the real world, and the gesture of the user's hand can be used as inputs in the virtual environment. A head mounted display (HMD) can be used with the proposed system to make the user absorbed in the virtual environment. In order to evaluate the usefulness of the proposed interface, we developed an interface for the virtual orchestra environment. The experiment verified that the user can use the system easily and intuituvely with being entertained.

  • PDF

Development of Smart driving monitoring device for Personal Mobility through Confusion Matrix verification

  • Han, Ju-Wan;Park, Seong-Hyun;Sim, Chae-Hyeon;Whang, Ju-Won
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.2
    • /
    • pp.61-69
    • /
    • 2022
  • As the delivery industry grew around the restaurant industry along with the COVID-19 situation, the number of delivery workers increased significantly. Along with that, new forms of delivery using personal mobility (PM) also emerged and two-wheeled or PM-related accidents are steadily increasing. This study manufactures a PM's driving analysis device to establish a safe delivery monitoring environment. This system was constructed to process data collected from the driving analysis device and through a cloud server, which would recognize and record special situations (acceleration/deceleration, speed bump) that could occur during the PM's driving situation. As a result, the angular speed, acceleration, and geomagnetic values collected from the IMU in the device were able to determine whether to drive, drive on the sidewalk, and drive on the speed bump. This technology was able to achieve approximately 1600 times more driving information storage efficiency than conventional image-based recording devices.

4D Printing Materials for Soft Robots (소프트 로봇용 4D 프린팅 소재)

  • Sunhee Lee
    • Fashion & Textile Research Journal
    • /
    • v.24 no.6
    • /
    • pp.667-685
    • /
    • 2022
  • This paper aims to investigate 4D printing materials for soft robots. 4D printing is a targeted evolution of the 3D printed structure in shape, property, and functionality. It is capable of self-assembly, multi-functionality, and self-repair. In addition, it is time-dependent, printer-independent, and predictable. The shape-shifting behaviors considered in 4D printing include folding, bending, twisting, linear or nonlinear expansion/contraction, surface curling, and generating surface topographical features. The shapes can shift from 1D to 1D, 1D to 2D, 2D to 2D, 1D to 3D, 2D to 3D, and 3D to 3D. In the 4D printing auxetic structure, the kinetiX is a cellular-based material design composed of rigid plates and elastic hinges. In pneumatic auxetics based on the kirigami structure, an inverse optimization method for designing and fabricating morphs three-dimensional shapes out of patterns laid out flat. When 4D printing material is molded into a deformable 3D structure, it can be applied to the exoskeleton material of soft robots such as upper and lower limbs, fingers, hands, toes, and feet. Research on 4D printing materials for soft robots is essential in developing smart clothing for healthcare in the textile and fashion industry.