• Title/Summary/Keyword: 헬리콥터 개념설계

Search Result 18, Processing Time 0.022 seconds

A Study of Helicopter Initial Sizing using Statistical Methodology (통계적 기법을 적용한 헬기 형상설계 연구)

  • Kim, June-Mo;Oh, Woo-Seop
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.22-32
    • /
    • 2007
  • This paper describes a study of a helicopter database for the sizing stage of a preliminary design process. The database includes specifications and performance parameters for more than 150 conventional single rotor helicopters currently in market. Design parameters, including configuration and weight parameters, have been analyzed and trend curve equations(regression equations) are derived using the regression analysis method. Finally, the applicability of this research result was verified whether the method is reliable for being adopted as a useful design tool in the early stage of a helicopter design process.

A Study on the Establishment of Education and Training Program for Urban Air Mobility(UAM) Pilot in Korea (국내 도심항공모빌리티(UAM) 조종사 교육·훈련제도 수립 방안 연구)

  • Young-jin Cho;Chul Park;Se-Hoon Yim
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.4
    • /
    • pp.330-336
    • /
    • 2023
  • Rapid urbanization is rapidly progressing around the world, and urban problems such as traffic congestion, environmental pollution, and noise pollution are emerging, due to this urban concentration phenomenon, logistics and transportation costs are increasing. Urban Air Mobility(UAM) is a three-dimensional futuristic urban transportation that is expected to become an important transportation axis of smart cities as a service(MaaS) linked to roads, railways, and personal transportation. However, as of July 2023, research on airspace systems, Bertieport design, navigation, and communication for UAM operation is actively being conducted, but little research has been conducted on the concept of pilot education and training and education and training programs. Therefore, this paper aims to present a suitable plan for the domestic pilot training system through SWOT analysis of vertical takeoff and landing(VTOL) pilot education and training programs in the United States and Europe.

A Study on the Systematic Crashworthiness Design Concept (체계적인 헬리콥터 내추락성 설계개념 연구)

  • Hwang, Jungsun;Jung, Jae-Kwon;Hyun, Young-O
    • Journal of Aerospace System Engineering
    • /
    • v.7 no.2
    • /
    • pp.35-41
    • /
    • 2013
  • Crashworthiness design concept in the helicopter development is still under evolutionary stage. Survivability in the event of a crash was remarkably improved and this fact can be recognized by the analysis results on the AH-64 Apache and UH-60 Black Hawk crash accidents. Those two models are the first ones in which the crashworthiness design concept was applied with a full-scale requirement. Here we need to notice that under-design of the system results in unexpected injuries and deaths while over-design of the crashworthy elements result in unnecessary weight and costs. If landing gear system would be verified to have enough energy absorption capability in the specified vertical velocity interval, then design requirements of the airframe, fuel system and seats could be modified positively. In this paper, the right and systematic crashworthiness design concept is reviewed on the assumption that design requirements of some crashworthy elements could be partially tailored.

Mechanical Development of an Unmanned Helicopter for Precise Small-scaled ULV Aerial Application - Conceptual Design and Prototype - (저투입 소필지 정밀 살포용 무인헬리콥터의 기체개발 - 기체요소의 개념설계 및 시작기 -)

  • Koo, Y.M.;Seok, T.S.;Shin, S.K.;Lee, C.S.;Kang, T.G.
    • Journal of Biosystems Engineering
    • /
    • v.33 no.2
    • /
    • pp.94-100
    • /
    • 2008
  • Present chemical application method using a power sprayer has been labor intensive, costly and ineffective. Therefore, a small agricultural unmanned helicopter was suggested to replace the conventional spray system. In this study, conceptual design for developing the helicopter and a consequential prototype were reported. The overall conceptual design was initiated by deciding the type of agricultural helicopter, as the single rotor helicopter with a tail system. As the first step of the designing, an air-cooled, 2-stroke engine was selected and a prototype transmission was designed by determining the rotating speed of main rotor shaft. A 'pusher' type tail rotor system was adapted to balance the reaction torque and reduce the power use. The tail boom length was designed to avoid the rotating trajectory of the main rotor. The RF console consisted of the engine control, attitude control, and emergency control modules. Assembling the prototype concluded the mechanical development of the agricultural helicopter.

Development and Assessment of Crashworthy Composite Subfloor for Rotorcrafts (회전익 항공기용 복합재 내추락 하부동체 구조 개발 및 검증)

  • Park, Ill Kyung;Lim, Joo Sup;Kim, Sung Joon;Kim, Tae-Uk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.1
    • /
    • pp.18-31
    • /
    • 2018
  • Rotorcrafts have more severe crashworthiness conditions than fixed wing aircraft owing to VTOL and hovering. Recently, with the increasing demand for highly efficient transportation system, application of composite materials to aircraft structures is increasing. However, due to the characteristics of composite materials that are susceptible to impact and crash, demand to prove the crashworthiness of composite structures is also increasing. The purpose of present study is to derive the structural concept of composite subfloor for rotorcrafts and verify it. In order to design a crashworthy composite subfloor, the conceptual design of the testbed helicopter for the demonstration and the derivation of energy absorbing requirement were carried out, and the composite energy absorber was designed and verified. Finally, the testbed for the demonstration of a crashworthy composite structure was fabricated, and performed free drop test. It was confirmed that the test results meet the criteria for ensuring occupant survivability.

An Empirical Study on Fear and Dizziness Using UAM Simulator (UAM 시뮬레이터를 활용한 공포심과 어지러움에 대한 실증 연구)

  • Se-Jun Kim
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.3
    • /
    • pp.262-268
    • /
    • 2023
  • Based on the government's willingness to commercialize UAM with the goal of 2025, it is making remarkable achievements in various fields, including the development of UAM. In addition, based on the concept of UAM, it is evolving into an Advanced Air Mobility(AAM) concept that includes commercial operation between long-distance or short-range cities, cargo delivery, public services, aviation tourism, and personal/leisure aircraft. however, research on physical problems such as low-altitude operation characteristics, speed within three dimensions, and dizziness caused by external environment has yet to be found. Therefore, in this study, actual images are taken while flying at the expected altitude and speed of UAM using a helicopter, and by experiencing it to the general public using a UAM simulator equipped with VR and Motion, physical reactions such as fear and dizziness of passengers that may occur during actual UAM operation of UAM are analyzed.

High Cycle Fatigue Life Evaluation of Damaged Composite Rotor Blades (손상된 복합재 로터 블레이드의 고주기 피로수명 평가)

  • Kee, Young-Jung;Kim, Seung-Ho;Han, Jeong-Ho;Jung, Jae-Kwon;Heo, Jang-Wook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.10
    • /
    • pp.1275-1282
    • /
    • 2012
  • Helicopter rotor systems are dynamically loaded structures with many composite components such as the main and the tail rotor blades. The fatigue properties of composite materials are extremely important to design durable and reliable helicopter rotor blades. The safe-life methodology has generally been used in the helicopter industry to substantiate dynamically loaded composite components. However, it cannot be used to evaluate the strength reducing effects of flaws and defects that may occur during manufacturing and operational usage. The damage tolerance methodology provides a proper means to overcome this shortcoming; however, it is difficult to economically apply it to every composite component. The flaw tolerant methodology is an equivalent option to the damage tolerance methodology for civil and military rotorcraft. In this study, the flaw tolerant safe-life evaluation is described and illustrated by means of successful application to substantiate the retirement time of composite rotor blades.

A Study on Commemoration Characteristics of Vietnam War Memorials in the United States of America (미국에 있는 베트남전쟁 메모리얼에 나타난 기념성)

  • Lee, Sang-Seok
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.43 no.1
    • /
    • pp.1-15
    • /
    • 2015
  • The purpose of this study was to analyze the commemoration characteristics of Vietnam War Memorials(VWM) in the United States(VWMUS). Through site survey and internet research, the researcher selected 87 VWMUS except monuments simply with markers, and analyzed 5 analysis items: design concepts, spatial characteristics, landscape details, sculptures, and interpretive texts and symbols. The results are as follows: 1. The analysis revealed that the main concepts of VWMUS were to cherish victims of the Vietnam War(85 sites (97.7%)), show veteran's dedication for country(85 sites(97.7%)), and publicize the contribution of groups by troop, regional, and membership(84 sites(96.6%)). 2. Most VWMUS were located in memorial parks and plazas. 59 memorials(67.8%) were designed to pursue the completion of each memorial assuming the form of symmetry and circles. On the other hand, 12 memorials(13.8%) were typed memorial walls and 11 memorials(12.6%) were formed by spatial sequence including various landscape details and grading. 3. Stone walls were mainly used to cherish victims of the War at 65 memorials(74.7%), and also, Flags like the Stars and Stripes, POW MIA flags, and state flags were hoisted to symbolize memorial's identity at all memorials. Additionally, Benches, monuments, markers, posts and columns, ponds and channels, Helicopters were partially introduced some memorials. 4. Sculptures were used 21 memorials(24.1%) which were smaller in numbers than other War Memorial in the U.S.A., for black stonewall were used for the main element of VWMUS. Except for a few sculptures that aimed to represent the Vietnam War symbolically and narratively, 16 memorials(18.4%) were formed to realistically express the image of wounded soldiers and their hardship in the Vietnam War. 5. KIA, MIA, Veteran's name were written and their images depicted on walls, Also, the symbolic phrase, 'ALL GAVE SOME, SOME GAVE ALL' and 'DUTY, HONOR, COUNTRY' were written on the memorials walls, and the POW MIA symbols were printed on the flags and engraved on walls. 6. In the United States of America, Democratic patriotism was considered a main ideological value in VWMUS by engraving KIA MIA's names on the walls, hoisting flags Stars and Stripes and POW MIA, and writing symbolic phrases 'ALL GAVE SOME, SOME GAVE ALL' and 'DUTY, HONOR, COUNTRY'. On the contrary, in Vietnam, nationalism, patriotism, and socialism were emphasized as main ideologies through raising war victory and resistance to foreign power as well as writing the symbolic phrase 'TO-QUOC-GUI-CONG' meaning 'our country remember your achievement' on memorial towers. Further study will be required to comparatively analyze VWM in order to understand national characteristics in Korea, Australia, U.S.A, and Vietnam.