• Title/Summary/Keyword: 헬륨

Search Result 378, Processing Time 0.026 seconds

Geotechnical Exploration Technologies for Space Planet Mineral Resources Exploration (우주 행성 광물 자원 탐사를 위한 지반 탐사 기술)

  • Ryu, Geun-U;Ryu, Byung-Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.9
    • /
    • pp.19-33
    • /
    • 2022
  • Planarity geotechnical exploration missions were actively performed during the 1970s and there was a period of decline from the 1 990s to the 2000s because of budget. However, exploring space resources is essential to prepare for the depletion of Earth's resources in the future and explore resources abundant in space but scarce on Earth, such as rare earth and helium-3. Additionally, the development of space technology has become the driving force of future industry development. The competition among developed countries for exoplanet exploration has recently accelerated for the exploration and utilization of space resources. For these missions and resource exploration/mining, geotechnical exploration is required. There have been several missions to explore exoplanet ground, including the Moon, Mars, and asteroids. There are Apollo, LUNA, and Chang'E missions for exploration of the Moon. The Mars missions included Viking, Spirit/Opportunity, Phoenix, and Perseverance missions, and the asteroid missions included the Hayabusa missions. In this study, space planetary mineral resource exploration technologies are explained, and the future technological tasks of Korea are described.

In-Situ Resources Utilization Technologies for Human Activities on the Moon (달에서 인류 활동을 위한 달 현지자원활용(In-Situ Resources Utilization) 기술)

  • Geunu, Ryu;Byunghyun, Ryu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.12
    • /
    • pp.41-53
    • /
    • 2022
  • After industrialization has been started, mankind needs and consumes more resources. Now, the resources depletion is a serious problem in the Earth. However, there are infinite resources in the Space. Especially, the Moon is the closest planet and has much resources, including Helium-3 and rare earths, which are needed to human being in the future. Humanity needs to reside on the moon to harvest these resources. For the resident, much resources, such as food, construction, and industrial materials, are needed. However, to transport these resources to the Moon from the Earth, an astronomical cost should be consumed. Thus, research is underway to support human activities by procuring resources locally. This is called In-Situ Resources Utilization (ISRU), which is the essential technology for the space development. In this paper, the reason why ISRU is essential and the its status are introduced and future research projects will be explained.

Tasks for Development of Autogenous Pressurization System and Construction of Test Equipment (자가증기 가압시스템 개발과제 및 모사시험설비 구성)

  • Cheulwoong Kim;Jisung Yoo;Sangyeon Ji;Jae Sung Park
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.27 no.1
    • /
    • pp.49-57
    • /
    • 2023
  • The autogenous pressurization has been widely adopted for propulsion systems of next-generation reusable rockets due to its low cost and high reliability. The autogenous pressurization has a simple structure, but an understanding of the heat and mass transfer occurring inside the tank is essential. For this reason, a simulation test of the autogenous pressurization was conceived. The experiment equipment was constructed based on overseas pressurization test facilities cases and expert advice. Unlike the actual autogenous pressurization system, the propellant tank was insulated to exclude external influences. The pressurized gas supply line and the propellant pipe were separated. Using the manufactured autogenous pressure experiment equipment, it is possible to evaluate the condensation phenomenon of pressurants in cryogenic propellants, comparison of the efficiency of pressurization using helium and evaporated gas and the pressurization capacity according to the temperature of pressurant.

Feasibility study of membrane interface for gas chromatograph-mass spectrometry (기체크로마토그래프-질량분석기의 실리콘 분리막 인터페이스의 유용성 연구)

  • Kang, Gil Seon;Lee, Dong Soo;Lee, Hwa Sim;Park, Chang Joon
    • Analytical Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.495-501
    • /
    • 2008
  • Agilent 5973 GC-MS instrument was modified so that the capillary direct interface was removed and that a silicone membrane was installed between GC and MS. Feasibility study of the membrane interface GC-MS has been carried out. Vacuum of the mass spectrometer was not affected by the carrier gas flow rate up to $4.7m{\ell}/min$. As the carrier flow rate was increased, peak tailing was reduced and chromatogram peaks appeared earlier. Chromatogram peaks showed better separation and higher sensitivity as the membrane thickness was reduced from $127{\mu}m$ to $75{\mu}m$, and also as the interface temperature was increased. However, the membrane interface GC-MS had drawbacks such as background ions at 73 and 147 m/z and poor peak separation due to peak tailing.

Study on the Cooling Mechanism in a Cryogenic Cooling System (극저온 냉각 챔버 내 냉각 메커니즘 연구)

  • SEONGWOO LEE;YOUNGSANG NA;YOUNGKYUN KIM;SEUNGMIN JEON;JUNHO LEE;SUNGWOONG CHOI
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.35 no.2
    • /
    • pp.146-151
    • /
    • 2024
  • The demand for research on materials with excellent cryogenic strength and ductility has been increasing, particularly for applications such as liquid hydrogen (20 K) storage tanks. To effectively utilize liquid hydrogen, a system capable of maintaining and operating at 20 K is essential. Therefore, preliminary research and verification of the cooling system are crucial. In this study, a heat transfer analysis was conducted on a cooling system to meet the cryogenic environment requirements for cryogenic hydrogen chamber, which are conducted at liquid helium temperatures (4 K). The cooling mechanism in a helium cooling system was examined using numerical analysis. The numerical cooling trends were compared with experimentally obtained cooling results. The good agreement between numerical and experimental results suggests that the numerical approach developed in this study is applicable over a wide range of cryogenic systems.

Comparison of Supersonic Jet Characteristics between Hydrogen and Helium injected by Small-cone-angle Pintle-type Hydrogen Injector (수소 및 헬륨을 이용한 작은 원추각 핀틀형 수소인젝터의 초음속 제트 특성 비교)

  • Gyuhan Bae;Juwan Lim;Jaehyun Lee;Seoksu Moon
    • Journal of ILASS-Korea
    • /
    • v.29 no.2
    • /
    • pp.83-90
    • /
    • 2024
  • Understanding the fundamental characteristics of supersonic hydrogen jets is important for the optimization of combustion in hydrogen engines. Previous studies have used helium as a surrogate gas to characterize the hydrogen jet characteristics due to potential explosion risks of hydrogen. It was based on the similarity of hydrogen and helium jet structures in supersonic conditions that has been confirmed using hole-type injectors and large-cone-angle pintle-type injectors. However, the validity of using helium as a surrogate gas has not been examined for recent small-cone-angle pintle-type injectors applied to direct-injection hydrogen engines, which form a supersonic hollow cone near the nozzle and experience the jet collapse downstream. Differences in the physical properties of hydrogen and helium could alter the jet development characteristics that need to be investigated and understood. This study compares supersonic jet structures of hydrogen and helium injected by a small-cone-angle (50°) pintle-type hydrogen injector and discusses their differences and related mechanisms. Jet penetration length and dispersion angle are measured using the Schlieren imaging method under engine-like injection conditions. As a result, the penetration length of hydrogen and helium jets showed a slight difference of less than 5%, and the dispersion angle showed a maximum of 10% difference according to the injection condition.

A Study on the Construction of the Gas Conversion Process System for a Pilot Plant Using a Small-scale Hydrogen Liquefaction System (소규모 수소 액화 시스템을 활용한 파일럿 플랜트의 기체 전환 공정 시스템 구축에 관한 연구)

  • YOUNG MIN SEO;HYUN WOO NOH;TAE HYUNG KOO;ROCK KIL KO;DONG WOO HA
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.35 no.4
    • /
    • pp.353-362
    • /
    • 2024
  • In this study, several studies were conducted on the construction of gas conversion process system for a pilot plant using a small-scale hydrogen liquefaction system. The pilot plant considered in this study includes a liquefier, a storage tank, an evaporator, a gas booster, and a gas storage tank. First, the suspected leak area of the container was checked using the sprayed method of helium gas. The small-scale hydrogen liquefaction system was designed based on the analysis results of the pre-cooling system and the liquefaction system. Additionally, the program was developed to maintain pressure within vessel for an automatic production of liquid hydrogen. The evaporator for liquid hydrogen was manufactured based on the designed analysis data, and the pollution of gas in the vessel was analyzed through a gas recovery line system.

Development of Multimedia Annotation and Retrieval System using MPEG-7 based Semantic Metadata Model (MPEG-7 기반 의미적 메타데이터 모델을 이용한 멀티미디어 주석 및 검색 시스템의 개발)

  • An, Hyoung-Geun;Koh, Jae-Jin
    • The KIPS Transactions:PartD
    • /
    • v.14D no.6
    • /
    • pp.573-584
    • /
    • 2007
  • As multimedia information recently increases fast, various types of retrieval of multimedia data are becoming issues of great importance. For the efficient multimedia data processing, semantics based retrieval techniques are required that can extract the meaning contents of multimedia data. Existing retrieval methods of multimedia data are annotation-based retrieval, feature-based retrieval and annotation and feature integration based retrieval. These systems take annotator a lot of efforts and time and we should perform complicated calculation for feature extraction. In addition. created data have shortcomings that we should go through static search that do not change. Also, user-friendly and semantic searching techniques are not supported. This paper proposes to develop S-MARS(Semantic Metadata-based Multimedia Annotation and Retrieval System) which can represent and extract multimedia data efficiently using MPEG-7. The system provides a graphical user interface for annotating, searching, and browsing multimedia data. It is implemented on the basis of the semantic metadata model to represent multimedia information. The semantic metadata about multimedia data is organized on the basis of multimedia description schema using XML schema that basically comply with the MPEG-7 standard. In conclusion. the proposed scheme can be easily implemented on any multimedia platforms supporting XML technology. It can be utilized to enable efficient semantic metadata sharing between systems, and it will contribute to improving the retrieval correctness and the user's satisfaction on embedding based multimedia retrieval algorithm method.

Acid Drainage and Damage Reduction Strategy in Construction Site: An Introduction (건설현장 산성배수의 발생현황 및 피해저감대책)

  • Kim, Jae-Gon
    • Economic and Environmental Geology
    • /
    • v.40 no.5
    • /
    • pp.651-660
    • /
    • 2007
  • Acid drainage has been recognized as an environmental concern in abandoned mine sites for long time. Recently, the environmental and structural damage by acid drainage is a current issue in construction sites in Korea. Here, the author introduces the type of damages by acid drainage in construction sites and emphasizes the importance of geoscience discipline in solving the problem. Metasedimentary rock of Okcheon group, coal bed of Pyeongan group, Mesozoic volcanic rock. and Tertiary sedimentary and volcanic rocks are the major rock types with a high potential for acid drainage upon excavation in Korea. The acid drainage causes the acidification and heavy metal contamination of soil, surface water and groundwater, the reduction of slope stability, the corrosion of slope structure, the damage on plant growth, the damage on landscape and the deterioration of concrete and asphalt pavement. The countermeasure for acid drainage is the treatment of acid drainage and the prevention of acid drainage. The treatment of acid drainage can be classified into active and passive treatments depending on the degree of natural process in the treatment. Removal of oxidants, reduction of oxidant generation and encapsulation of sulfide are employed for the prevention of acid drainage generation.

Hydrochemistry and Noble Gas Origin of Various Hot Spring Waters from the Eastern area in South Korea (동해안지역 온천유형별 수리화학적 특성 및 영족기체 기원)

  • Jeong, Chan-Ho;Nagao, Keisuke;Kim, Kyu-Han;Choi, Hun-Kong;Sumino, Hirochika;Park, Ji-Sun;Park, Chung-Hwa;Lee, Jong-Ig;Hur, Soon-Do
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.1
    • /
    • pp.1-12
    • /
    • 2008
  • The purpose of this study is to characterize the hydrogeochemical characteristics of hot spring waters and to interpret the source of noble gases and the geochemical environment of the hot spring waters distributed along the eastern area of the Korean peninsula. For this purpose, We carried out the chemical, stable isotopic and noble gas isotopic analyses for eleven hot spring water and fourteen hot spring gas samples collected from six hot spring sites. The hot spring waters except the Osaek hot spring water show the pH range of 7.0 to 9.1. However, the Osaek $CO_2$-rich hot spring water shows a weak acid of pH 5.7. The temperature of hot spring waters in the study area ranges from $25.7^{\circ}C$ to $68.3^{\circ}C$. Electrical conductivity of hot spring waters varies widely from 202 to $7,130{\mu}S/cm$. High electrical conductivity (av., $3,890{\mu}S/sm$) by high Na and Cl contents of the Haeundae and the Dongrae hot spring waters indicates that the hot spring waters were mixed with seawater in the subsurface thermal system. The type of hot springs in the viewpoint of dissolved components can be grouped into three types: (1) alkaline Na-$HCO_3$ type including sulfur gas of the Osaek, Baekam, Dukgu and Chuksan hot springs, and (2) saline Na-Cl type of the Haeundae and Dongrae hot springs, and (3) weak acid $CO_2$-rich Na-$HCO_3$ type of Osaek hot spring. Tritium ratios of the Haeundae and the Dongrae hot springs indicate different residence time in their aquifers of older water of $0.0{\sim}0.3$ TU and younger water of $5.9{\sim}8.8$ TU. The ${\delta}^{18}O$ and ${\delta}D$ values of hot spring waters indicate that they originate from the meteoric water, and that the values also reflect a latitude effect according to their locations. $^3He/^4He$ ratios of the hot spring waters except Osaek $CO_2$-rich hot spring water range from $0.1{\times}10^{-6}$ to $1.1{\times}10^{-6}$ which are plotted above the mixing line between air and crustal components. It means that the He gas in hot spring waters was originated mainly from atmosphere and crust sources, and partly from mantle sources. The Osaek $CO_2$-rich hot spring water shows $3.3{\times}10^{-6}$ in $^3He/^4He$ ratio that is 2.4 times higher than those of atmosphere. It provides clearly a helium source from the deep mantle. $^{40}Ar/^{36}Ar$ ratios of hot spring water are in the range of an atmosphere source.