DOI QR코드

DOI QR Code

Tasks for Development of Autogenous Pressurization System and Construction of Test Equipment

자가증기 가압시스템 개발과제 및 모사시험설비 구성

  • Cheulwoong Kim (Small Launcher Research Division, Korea Aerospace Research Institute) ;
  • Jisung Yoo (Aerospace Performance Units/Development Team, HanyangEng) ;
  • Sangyeon Ji (Aerospace Performance Units/Development Team, HanyangEng) ;
  • Jae Sung Park (Small Launcher Research Division, Korea Aerospace Research Institute)
  • Received : 2022.10.13
  • Accepted : 2023.02.15
  • Published : 2023.02.28

Abstract

The autogenous pressurization has been widely adopted for propulsion systems of next-generation reusable rockets due to its low cost and high reliability. The autogenous pressurization has a simple structure, but an understanding of the heat and mass transfer occurring inside the tank is essential. For this reason, a simulation test of the autogenous pressurization was conceived. The experiment equipment was constructed based on overseas pressurization test facilities cases and expert advice. Unlike the actual autogenous pressurization system, the propellant tank was insulated to exclude external influences. The pressurized gas supply line and the propellant pipe were separated. Using the manufactured autogenous pressure experiment equipment, it is possible to evaluate the condensation phenomenon of pressurants in cryogenic propellants, comparison of the efficiency of pressurization using helium and evaporated gas and the pressurization capacity according to the temperature of pressurant.

자가증기 가압시스템은 저비용, 고신뢰도의 장점으로 차세대 재사용 발사체들의 추진기관에 널리 채택되고 있다. 자가증기 가압시스템은 구조가 간단하나 탱크 내부에서 일어나는 열과 물질의 전달과정에 대한 이해가 필요하다. 이러한 이유로 자가증기 가압시스템의 모사시험을 구상하였다. 모사시험설비는 해외 가압시험설비 사례와 전문가의 자문을 기반으로 구성하였는데, 실제 자가증기 가압시스템과 달리 추진제 탱크를 단열하여 외부환경에 의한 영향을 배제하고자 하였으며, 열과 물질 전달현상의 연구의 편의를 위하여 가압가스 공급라인과 추진제 배관을 분리하였다. 제작된 자가증기가압 모사시험설비를 이용하여 극저온 추진제에서 가압가스의 응축현상, 헬륨을 이용한 가압과 증발된 추진제를 이용한 자가증기가압의 효율성 비교, 그리고 자가증기의 온도에 따른 가압능력을 평가할 수 있다.

Keywords

References

  1. Elliot R., Aruthur A.F, James A.B., Morris H.T, Charles D.B., Keith S.M. and Samuel CL, Rocket Propellant and Pressurization Systems, Prentice-Hall Inc., Englewood Cliffs, N.J., U.S.A., 1964.
  2. Belyaev N.M., Pressurization systems for rocket Propellant Tank, Mashinostroenie, Moscow, Russian Federation, 1976.
  3. NASA, "Pressurization systems for liquid rockets," NASA SP-8112 1975.
  4. Kim C.W., Lim B.J., Lee J.S., Seo D.B., Lim S.H., Lee K.O, Lee K.J. and Park J.S, "Conceptual Design of a LOX/Methane Rocket Engine for a Small Launcher Upper Stage," Journal of the Korean Society of Propulsion Engineers, Vol. 26, No.4, pp. 54-63, 2022. https://doi.org/10.6108/KSPE.2022.26.4.054
  5. "Propellant tank buckling," retrieved 20 Oct. 2022, from https://space.stackexchange.com/questions/38152/will-some-rockets-really-collapse-under-their-own-weight.
  6. Bershadskiy V.A., Sokolov B.A. and Tumanin E.N., "A Method for Verifying the Model of Tank Operational Pressurization Process during Development of Propellant Supply System in Liquid Rocket Engines of Launch Vehicle Propulsion Systems," Kosmicheskaya tekhnika i tekhnologii, Vol. 36, No. 1, 2022.
  7. Ruby L.E., Christian C. and Lehmann E.A., "Autogenous Pressurization for Space Vehicle Propulsion Systems," Cleveland, Ohio, U.S.A., AIAA 1968-626, 1968.
  8. "V-2 rocket engine schematic," retrieved 5 Feb. 2023, from http://www.enginehistory.org/Museums/USSRC/USSRC_V-2.shtml.
  9. Bershadskiy V.A. and Kolomentsev A.I., Test Methods for Systems for Supplying Cryogenic Fuel Components to an Engine with Simulation of Thermal Processes, MAI, Moscow, Russian Federation, 2018.
  10. Ludwig C., Analysis of Cryogenic Propellant Tank Pressurization based upon Experiments and Numerical Simulations, Cuvillier Verlag, Gottingen, Germany, 2014.
  11. Ludwig C. and Dreyer M.E., "Analysis of Cryogenic Propellant Tank Pressurization based upon Ground Experiments," AIAA Space Conference & Exposition, Pasadena, Califonia, U.S.A., AIAA 2012-5199, Sep. 2012.
  12. Ludwig C. and Dreyer M.E., "Analyses of Cryogenic Propellant Tank Pressurization based upon Experiments and Numerical Simulations," 5th European Conference for Aeronautics and Space Sciences, Munich, Germany, 2013.
  13. Naoumov V.I., Krioukov V.G., Abdullin A.L. and Demin A.V., Chemical Kinetics in Combustion and Reactive Flows: Modeling Tools and Applications, Cambridge Univeristy Press, London, United Kingdom, 2019.
  14. Shulepov A.I., Petrovichev M.A. and Pankov A.A. Fundamentals of rocket design, Samara State Technical University, Samara, Russian Federation, 2012.
  15. Baranov D.A., Yelenov V.D., Typical Solutions in the Design and Construction of Elements of Launch Vehicles, Samra University, Samara, Russian Federation, 2020.
  16. Hermsen R. and Zandbergen B., "Pressurization system for a cryogenic propellant tank in a pressure-fed high-altitude rocket," 7th EUCASS, Milan, Italy, 2017.
  17. Kostyuk V.V. and Firosv V.P., Heat Transfer and Hydrodynamics in Cryogenic Liquid Rocket Engines, Nayuk, Moscow, Russian Federation, 2019.