• Title/Summary/Keyword: 헥사데칸

Search Result 10, Processing Time 0.022 seconds

Miniemulsion Polymerization of Poly(vinyl acetate) Nanoparticles Stabilized by Hexadecane (헥사데칸에 의해 안정된 폴리(비닐 아세테이트) 나노입자의 미니유화 중합)

  • 박수진;김기석
    • Polymer(Korea)
    • /
    • v.28 no.1
    • /
    • pp.10-17
    • /
    • 2004
  • Poly(vinyl acetate) (PVAc) nanoparticles were synthesized in oil/water miniemulsion polymerization in the presence of low amount of hexadecane as a cosurfactant. The nanoparticles were tested to apply as a drug carrier. The shape of nanoparticles was observed by scanning electron microscopy, and the average particle size and size distribution were examined by particle size analyzer. Inclusion of antibiotic drugs into the nanoparticles was confirmed by CHO, C=O, and OH peak of FT-IR. Size of the nanoparticles were adjusted between 80∼300 nm by changing the homogenization rate and amount of cosurfactant and surfactant. The monomer droplets prepared by miniemulsion method using a cosurfactant were homogeneous and stable compared with those prepared by conventional emulsion polymerization. This might be occurred due to the prevention of Ostwald ripening and coalescence between droplets by using hexadecane as a cosurfactant.

Synthesis and Biological Activity Test of the Sex Pheromone of the Diamond Back Moth (배추좀나방의 성 페로몬의 합성과 생물활성시험)

  • Suk-Ku Kang;Chul-Hee Lee;Jung Han Kim;Jeong-Oon Lee
    • Journal of the Korean Chemical Society
    • /
    • v.32 no.1
    • /
    • pp.60-64
    • /
    • 1988
  • Synthesis and biological activity test are described for the (Z)-11-hexadecen-1-ol, (Z)-11-hexadecen-1-yl acetate, and (Z)-11-hexadecen-l-al, the sex pheromone of the diamond back moth, Plutella xylostella L.. Lithium acetylide was alkylated with 10-bromodecan-1-ol THP ether to give 11-hexadecyn-l-ol THP ether. 11-Hexadecyn-l-ol THP ether was stereoselectively reduced over Pd/BaSO4to yield (Z)-11-hexadecen-l-ol THP ether, which was in turn deprotected to provide (Z)-11-hexadecen-l-ol. (Z)-11-Hexadecen-l-ol was acetylated and oxidized to afford (Z)-11-hexadecen-1-yl acetate and (Z)-11-hexadecen-l-al, respectively. Biological activity test of the synthetic compounds, (Z)-11-hexadecen-l-ol, (Z)-11-hexadecen-1-yl acetate, and (Z)-11-hexadecen-l-al in the ratio of 0.1 : 5 : 5 was tested in the field using polyethylene capsules as containers. The numbers of moth trapped with pheromone vials were counted.

  • PDF

A Study on the Characteristics of Ignition and Combustion, in a Diesel Spray Using Multi-Component Mixed Fuels (다성분 혼합연료를 이용한 디젤분무의 착화연소특성에 관한 연구)

  • Yoon, Jun-Kyu;Lim, Jong-Han
    • Journal of Energy Engineering
    • /
    • v.16 no.3
    • /
    • pp.120-127
    • /
    • 2007
  • The purpose of this study is experimentally to analyze that the fuel mass fractions of multi-component mixed fuels have an effect on the characteristics of spray ignition and combustion under the ambient conditions of diesel combustion fields. The characteristics of ignition and combustion were investigated by chemiluminescence images and direct photography. The experiments were conducted in the RCEM(rapid compression expansion machine) with optical access. Multi-component fuels mixed with i-octane, n-dodecane and n-hexadecane are injected in RCEM by the electronic control of common rail injector. Experimental conditions set up 42, 72 and 112 MPa in injection pressure, 700, 800 and 900 K in ambient gas temperature. The results show that the ignition delay was dependent on high cetane number. In case of low ambient temperature, the more low boiling point fuels were mixed, the lower luminance regime had a remarkable effect and also shortened diffusion combustion by increasing heat release rate.

Preserving Reliability of Evidence Containers for Fire Debris Containing Ignitable Liquids (유류화재증거물 보관용기의 신뢰성에 관한 연구)

  • Han, Dong-Hun;Lee, Sung-Ryong
    • Fire Science and Engineering
    • /
    • v.27 no.2
    • /
    • pp.70-74
    • /
    • 2013
  • It is very important for the collected samples at fire scenes to be properly preserved for laboratory analysis. Preserving abilities of four type containers, metal cans, glass jars, zipper and heat sealed polymer bags, with the five ignitable liquids (toluene, n-octane, o-xylene, n-decane and n-hexadecane) were examined with gas chromatography-mass spectrometry. The glass jars with Teflon (PTFE) liner were the best ability to prevent the evaporation of the ignitable liquids.

Hydrogen Production from Steam Reforming of n-Hexadecane over Ni-Based Hydrotalcite-Like Catalyst (니켈계 유사 하이드로탈사이트 촉매상에서 n-헥사데칸의 수증기 개질에 의한 수소 생산)

  • Lee, Seung-Hwan;Moon, Dong-Ju
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.5
    • /
    • pp.412-418
    • /
    • 2010
  • Steam reforming of n-hexadecane, a major component of diesel over Ni-based hydrotalcite-like catalyst was carried out at $900^{\circ}C$ at atmospheric pressure with space velocity of $10,000h^{-1}$ and feed molar ratio of steam/carbon=3.0. Ni-based hydrotalcite catalyst was prepared by a solid phase crystallization (spc) method and characterized by $N_2$-physisorption, CO chemisorption, TPR., XRD, and TEM techniques. It was found that spc Ni/MgAl catalyst showed higher catalytic stability and inhibition of carbon formation than Ni/$\gamma-Al_2O_3$ catalyst under the tested conditions. The results suggest that the modified spc-Ni/MgAl catalyst after optimization may be applied for the SR reaction of diesel.

Preparation and Thermal Characteristics of Hexadecane/xGnP Shape-stabilized Phase Change Material for Thermal Storage Building Materials (축열건축자재 적용을 위한 Hexadecane/xGnP SSPCM 제조 및 열적특성)

  • Kim, Sug-Hwan;Jeong, Su-Gwang;Lim, Jae-Han;Kim, Su-Min
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.1
    • /
    • pp.73-78
    • /
    • 2013
  • Hexadecane and exfoliated graphite nanoplate (xGnP)composite was prepared as a shape-stabilized phase change material (SSPCM) in a vacuum to develope thermal energy storage. The Hexadecane as an organic phase change material (PCM) is very stable against phase separation of PCM and has a melting point at $18^{\circ}C$ that is under the thermally comfortable temperature range in buildings. The xGnP is a porous carbon nanotube material with high thermal conductivity. Scanning electron microscope (SEM) and Fourier transformation infrared spectrophotometer (FT-IR)were used to confirm the chemical and physical stability of Hexadecane/xGnP SSPCM. In addition, thermal properties were determined by Deferential scanning calorimeter(DSC) and Thermogravimetric analysis (TGA). The specific heat of Hexadecane/xGnPSSPCM was $10.0J/g{\cdot}K$ at $21.8^{\circ}C$. The melting temperature range of melting and freezing were found to be $16-25^{\circ}C$ and $17-12^{\circ}C$. At this time, the laten heats of melting and freezing were 96.4J/g and 94.8J/g. The Hexadecane was impregnated into xGnP as much about 48.8% of Hexadecane/xGnP SSPCM's mass fraction.

The Measurement of Fire and Explosion Properties of n-Hexadecane (노말헥사데칸의 화재 및 폭발 특성치의 측정)

  • Ha, Dong-Myeong
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.3
    • /
    • pp.39-45
    • /
    • 2014
  • For the safe handling of n-hexadecane, the lower flash points and the upper flash point, fire point, AITs(auto-ignition temperatures) by ignition delay time were experimented. Also lower and upper explosion limits by using measured the lower and upper flash points for n-hexadecane were calculated. The lower flash points of n-hexadecane by using the Setaflash and the Pensky-Martens closed testers were measured $128^{\circ}C$ and $126^{\circ}C$, respectively. The lower flash points of the Tag and the Cleveland open cup testers were measured $136^{\circ}C$ and $132^{\circ}C$, respectively. The fire points of the Tag and the Cleveland open cup testers were measured $144^{\circ}C$. respectively. This study measured relationship between the AITs and the ignition delay times by using ASTM E659 apparatus for n-hexadecane. The experimental AIT of n-hexadecane was $200^{\circ}C$. The calculated lower and upper explosion limit by using measured lower $128^{\circ}C$ and upper flash point $180^{\circ}C$ for n-hexadecane were 0.42 Vol.% and 4.70 Vol.%.

Effect of Solvents on Phase Behavior and Flux Removal Efficiency in Alkyl Ethoxylates Nonionic Surfactant Based Cleaners (Alkyl Ethoxylates계 비이온 계면활성제를 주체로 한 세정제에서 용제에 따른 상거동과 플럭스 제거 효능)

  • Lee, Jong-Gi;Bae, Sang-Soo;Cho, In-Sik;Park, So-Jin;Park, Byeong-Deog;Park, Sang-Kwon;Lim, Jong-Choo
    • Applied Chemistry for Engineering
    • /
    • v.16 no.5
    • /
    • pp.677-683
    • /
    • 2005
  • In this work, the effect of additives such as solvent, sodium dodecyl sulfate and NaCl on microemulsion phase behavior and flux removal efficiency in systems containing commercial alkyl ethoxylates nonionic surfactant was investigated. The addition of a n-hydrocarbon as a solvent produced on O/W (Oil/Water) microemulsion phase over a wider range of temperature and cosurfactant to surfactant ratios. Especially, the addition of n-hexadecane to the surfactant system, which was the most hydrophobic solvent among the solvents used in this study, produced a microemulsion phase over a wide range of temperatures and promoted formation of a microemulsion phase at lower temperatures. The candidate for cleaner samples, prepared from phase behavior experiments, showed excellent removal efficiency for abietic acid at $40^{\circ}C$. These data suggested the potential applicability of hydrocarbons to actual cleaner formulations.

In situ Microfluidic Method for the Generation of Monodisperse Double Emulsions (미세유체를 이용한 단분산성 이중 에멀젼 생성 방법)

  • Hwang, So-Ra;Choi, Chang-Hyung;Kim, Hui-Chan;Kim, In-Ho;Lee, Chang-Soo
    • Polymer(Korea)
    • /
    • v.36 no.2
    • /
    • pp.177-181
    • /
    • 2012
  • This study presents the preparation of double emulsions in a poly(dimethylsiloxane) (PDMS)-based microfluidic device. To improve the wettability of hydrophilic continuous phase onto a hydrophobic PDMS microchannel, the surface was modified with 3-(trimethoxysilyl) propyl methacrylate (TPM) and then sequentially reacted with acrylic acid monomer solution, which produced selective covalent bonding between acrylic acids and methacrylate groups. For the proof of selective surface modification, tolonium chloride solution was used to identify the modified region and we confirmed that the approach was successfully performed. When water containing 0.5% w/w sodium dodecyl sulfate and 1% w/w Span80 with hexadecane were loaded into the selectively modified microfluidic channels, we can produce stable double emulsion. Based on the spreading coefficients, we predict the morphology of double emulsions. Our proposed method efficiently produces monodisperse double emulsions having 48.5 ${\mu}m$(CV:1.6%) core and 65.1 ${\mu}m$ (CV:1.6%) shell. Furthermore, the multiple emulsions having different numbers of core were easily prepared by simple control of flow rates.

Poly(ethylene terephthalate) Nanocomposite Fibers with Thermally Stable Organoclays (내열성 유기화 점토를 이용한 폴리(에틸렌 테레프탈레이트) 나노복합체 섬유)

  • Jung, Min-Hye;Chang, Jin-Hae
    • Polymer(Korea)
    • /
    • v.31 no.6
    • /
    • pp.518-525
    • /
    • 2007
  • The thermomechanical properties and morphologies of nanocomposite fibers of poly(ethylene terephthalate)(PET) incorporating thermally stable organoclays are compared. Dodecyltriphenyl-phosphonium-mica($C_{12}PPh-Mica$) and 1-hexadecane benzimidazole-mica ($C_{16}BIMD-Mica$) were used as reinforcing fillers in the fabrication of PET hybrid fibers. Dispersions of organoclays with PET were studied by using the in-situ polymerization method at various organoclay contents to produce nano-scale composites. The thermo-mechanical properties and morphologies of the PET hybrid fibers were determined using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), wide angle X-ray diffraction (XRD), electron microscopy (SEM and TEM), and a universal tensile machine (UTM). Transmission electron microscopy (TEM) micrographs show that some of the clay layers are dispersed homogeneously within the polymer matrix on the nano-scale, although some clay particles are agglomerated. We also found that the addition of only a small amount of organoclay is enough to improve the thermal stabilities and mechanical properties of the PET nanocomposite fibers. Even polymers with low organoclay content (<5 wt%) were found to exhibit much higher thermo-mechanical values than pure PET fibers.