산업화가 진행된 세계 주요 선진국들은 의학의 발달과 평균 수명의 증가로 고령화의 위기를 겪고 있다. 인구 고령화에 따라 치매 인구도 크게 증가하였다. 치매 인구의 증가는 국가와 가정의 물질적, 인적 비용을 증가시키고 있다. 이와 같은 사회문제를 해결하고 효율적인 치매 환자 관리를 위한 방법이 필요하다. 관찰 대상자가 치매 증상과 비슷하게 행동한다면 치매를 의심해 볼 수 있다. 본 논문에서는 3축 가속도 센서를 사용하여 대상자의 행위 정보를 수집하고 디지털화한다. 디지털화 된 행위정보를 치매 증상의 행동 패턴과 비교하여 관찰 대상자의 행동이 치매 증상인지 정상적인 활동인지 판단할 수 있는 방법을 소개한다.
침입탐지에 있어서 사용자 로그 분석은 중요한 주제로서, 기존의 연구들에서 클러스터링 기법들을 사용하여 저장된 사용자 로그들을 분석해왔다. 하지만, 이러한 방법은 고정된 사용자 패턴 분석에는 효율적이지만, 로그 스트림과 같이 무한히 생성되어 사용자 패턴이 변화하는 경우 변화하는 패턴을 분석할 수 없다. 본 연구에서는 무한히 생성되는 사용자 로그 스트림을 대상으로 실시간 침입탐지 방법을 제시한다. 사용자로그의 정보는 사용자 행동에 대한 특성값으로 표현되어, 이러한 특성값들에 대해 실시간 데이터 스트림 클러스터링을 수행하여 이들을 클러스터로 분류한다. 각 클러스터는 사용자의 정상로그에 대한 특성값을 반영하게 되며, 그 결과 과거 사용자 로그에 대한 저장없이 새로운 로그 스트림을 지속적으로 분석할 수 있다. 결과적으로 사용자의 비정상행동을 실시간으로 탐지할 수 있으며, 이를 실험을 통해 평가하였다.
사람의 성격 분석에 따라 그 사람의 이동패턴을 알 수 있다. 따라서 성격 데이터를 이용하면, 사람의 행동 패턴을 유추해 낼 수 있다. 사람의 행동 패턴은 주로 그 사람이 선호하는 장소의 집합으로 규정 할 수 있다. 본 논문에서는 사람의 성격과 장소 데이터 사이의 상관관계를 알아보고자 한다. 포스퀘어에서 얻어진 장소정보와 성격요인 분석을 통해 얻어진 사람 성격과의 상관관계를 파악하기 위한 기법으로 회귀분석을 사용했다. 장소정보는 그 장소에 해당하는 업종으로 변환되었다. 위치 데이터와 업종 분류표와의 분석을 어떻게 적용 하였는지 설명하고, 회귀분석을 통해서 성격 데이터와 업종 분류 데이터를 분석한다.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2006.11a
/
pp.101-104
/
2006
유비쿼터스 시대가 다가오면서 앞으로 가정 및 회사 등 인간이 거주하며 생활하는 공간에서의 좀 더 편리하고 효율적인 다양한 정보를 인간에게 인지시켜 줄 수 있는 환경이 구축되어야한다. 이를 기반으로 유비쿼터스 주변장치들의 네트워크와 인간에게 많은 정보와 편리성이 좀 더 효율적으로 이루어져야 할 것이다. 이를 위해 본 논문에서는 센서모듈에서 추출되는 데이터를 신경망과 퍼지 알고리즘을 사용해 동작인식의 패턴을 분류하여 인간의 사고를 움직임 파악한다. 이러한 패턴의 분류를 통해 홈네트워크 시스템과의 센서모듈의 통신제어가 가능하게 된다 이를 바탕으로 패턴이 분류된 행동들의 명령으로 미리 지정된 간단한 손동작으로 여러 가전기기라든지 홈네트워크 시스템의 제어방식을 더욱 간단히 제어하며, 인간의 건강상태를 파악함으로써 인간행동과 상태에 따른 유비쿼터스 환경의 제어가 이루어 질 수 있는 시스템을 제안한다.
This study was designed to determine the effect of gestation housing and parity on the farrowing performance and behaviour of sows during pregnancy, farrowing and lactation periods. Total 18 Duroc sows were randomly assigned after 4 weeks of gestation to either an individual gestation stall or a groups of three with pen gestation system for three parities(1st, 2nd${\sim}$3rd, and 4th${\sim}$5th). Approximately 7 days before predicted farrowing date, sows were transferred to farrowing crates where they remained until 21 days post-partum. Behaviour was recorded on day 60 and 90 of pregnancy for 24 hours, on day of farrowing for farrowing duration and on day 10 of lactation for 2.5 hours in the farrowing crate. The results obtained from this study were summarized as follows: On 60 and 90 day of pregnancy, all sows in both groups made attempts for ventral lying more than for other postures. Sows in the group gestation pen spent more time on walking than those in individual gestation stall(p<0.01); however, the group housed sows were spent less time on drinking than the individually housed sows(p<0.01). There was no significant difference between gestation housings in the occurrence of stereotypy of pregnant sows. On day 60 of pregnancy, sows in the individual gestation stall showed the highest frequency of vacuum chewing and head weaving. However, floor licking and bar licking behaviours were highest in day 90 pregnant sows individually housed. The sows individually housed during the gestation period spent more time on sitting and eating on the day of farrowing in the farrowing crate than the sows group housed. On day 10 of lactation in the farrowing crate, the group housed sows during the gestation period made significantly more attempts for ventral lying than sows individually housed. In conclusion, the occurrence of stereotypy of sows during the gestation and lactation did not differ between gestation housings and farrowing performance of sows during the gestation period was not affected by gestation housing. Thus, the group housing for pregnant sows is a feasible means to improve welfare of sows and to increase the normal behaviour of sows.
본 논문에서는 비분할 비디오로부터 이 비디오에 담긴 사람의 행동을 효과적으로 탐지해내기 위한 심층 신경망 모델을 제안한다. 일반적으로 비디오에서 사람의 행동을 탐지해내는 작업은 크게 비디오에서 행동 탐지에 효과적인 특징들을 추출해내는 과정과 이 특징들을 토대로 비디오에 담긴 행동을 탐지해내는 과정을 포함한다. 본 논문에서는 특징 추출 과정과 행동 탐지 과정에 이용할 심층 신경망 모델을 제시한다. 특히 비디오로부터 각 행동별 시간적, 공간적 패턴을 잘 표현할 수 있는 특징들을 추출해내기 위해서는 C3D 및 I-ResNet 합성곱 신경망 모델을 이용하고, 시계열 특징 벡터들로부터 행동을 자동 판별해내기 위해서는 양방향 BI-LSTM 순환 신경망 모델을 이용한다. 대용량의 공개 벤치 마크 데이터 집합인 ActivityNet 비디오 데이터를 이용한 실험을 통해, 본 논문에서 제안하는 심층 신경망 모델의 성능과 효과를 확인할 수 있었다.
인간의 여가행동에는 여러 유형이 있겠지만, 그 중 시공간적 행동패턴이 가장 잘 드러나는 것은 아마 여행일 것이다. 이러한 이유 때문에 지리학에서는 여행행태를 시공간적으로 분석하는 연구들이 국내외에서 적지 않게 진행되어 왔다. 그러나 우리나라에서는 자료수집의 어려움 때문에 과거사람들의 여행 행태를 살펴보는 연구가 거의 이루어지지 못했는데, 이러한 상황에서 필자가 주목한 것이 '유산기'이다. (중략)
Proceedings of the Korea Society of Costume Conference
/
2004.05a
/
pp.61-61
/
2004
현대 사회에 들어와서는 소비자의 성향이나 소비패턴의 다양화로 인하여 소비자 행동을 예측할 수 있는 보다 중요한 변수가 무엇인가에 대한 연구가 필요하여 알아보고자 한다. 특히 자녀를 둔 주부들의 경우 자녀의 의복 소비성향에서 다양한 성향들을 나타내는데, 이는 사회구조나 가족구조의 변화에 따라 소득의 향상, 주부의 사회진출이나 낮은 출산율 등의 영향으로 유아복에 대한 소비자들의 관심이 커지고 있기 때문이다. (중략)
The number of one person households has grown steadily over the recent past and the population of lonely and unnoticed death are also observed. The phenomenon of one person households has been occurred. In the dark side of society, the remarkable number of lonely and unnoticed death are reported among different age-groups. We propose an unusual event detection method which may give a remarkable solution to reduce the number of the death rete for people dying alone and remaining undiscovered for a long period of time. The unusual event detection method we suggested to identify abnormal user behavior in their lives using vision pattern, audio pattern, and dust pattern algorithms. Individually proposed pattern algorithms have disadvantages of not being able to detect when they leave the coverage area. We utilized a fusion method to improve the accuracy performance of each pattern algorithm and evaluated the technique with multiple user behavior patterns in indoor areas.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.