• Title/Summary/Keyword: 해저케이블

Search Result 133, Processing Time 0.026 seconds

Optimization Algorithm for KP and XTE Implementation on the Submarine Cable Work (해저케이블 작업에서의 KP와 XTE 구현을 위한 최적화 알고리즘)

  • 이태오;임재홍
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.3
    • /
    • pp.423-436
    • /
    • 2003
  • Submarine optical fiber cable construction consists of marine survey, PLGR(Pre Lay Grapnel Run), shore-end-work, laying order. PLGR is the work process which removes the oceanic contaminations(ropes, wires, nets etc.) in the route before laying the submarine optical cable. This PLGR is work to ease the cable lay safely in seabed, improve the performance of Plough and ROV((Remotely-Operated Vehicle) laying work, and protect laying equipment. This paper presents the optimization algorithm implementation of KP(Kilometer Post) and XTE(Cross Track Error) to manage marine survey and PLGR work efficiently. In this paper, we composes overall PLGR work, and proposed optimization algorithm of KP and XTE. For the validity evaluation of this paper, KP and XTE decision algorithm are implemented and tested.

A study for the stability of international submarine cables within Korean waters (한국 연근해 국제해저광케이블 안정성을 위한 연구)

  • Lee, Young-Sun;Jung, Jae-Jin;Shin, Hyun-Sik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.2 no.1
    • /
    • pp.34-39
    • /
    • 2007
  • Submarine cable is the leading means of international communication across oceans. However, when such important submarine cable is damaged, that causes not only huge amount for the repair but also losing the nation's reliability internationally, and has brought about much difficulty and loss due to the interruption of communication. So, in order to deduce methods for the stability of submarine cables, this paper is studying the present status of submarine cables and the causes of cable faults, and suggesting techniques and regulations to protect from the trouble of submarine cables.

  • PDF

Insulation Characteristics Evaluation of Submarine Cables Inside the J-Tube of Offshore Wind Farms (해상풍력단지 J-Tube 내부 해저케이블의 절연 특성 평가)

  • Seung-Won Lee;Jin-Wook Choe;Hae‑Jong Kim
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.6
    • /
    • pp.570-575
    • /
    • 2023
  • Demand and necessity for eco-friendly offshore wind farms have been increasing. Research on submarine cables is constantly being considered for a reliable and stable power transmission. This study aimed to evaluate the thermal aging characteristic of submarine cables inside the J-tube of offshore wind farms. In this study, a submarine cable was set in three sections: The first is the part exposed to the air above the sea level at high temperature. The second is the section exposed to repeated temperature fluctuation as the sea level rises and falls. The third is the part submerged at low temperature below the sea level. Aged samples were tested by using the method of electrical evaluation to obtain insulation characteristics. The experimental results show that the dielectric breakdown of the sample with temperature fluctuation was 7% lower than the sample with a constant temperature; thereby, demonstrating that the section where the temperature fluctuation occurred in the submarine cables was weaker than the other. The sections of submarine cable with temperature fluctuations are believed as a weak point during operation; therefore, this part should be monitored preferentially.

A Study on the System Integrity of Gas Pipeline by High Voltage Power Line in Submarine Tunnel (절점망 해석프로그램을 이용한 해저터널 내 고전압 전력케이블에 의한 가스배관의 안전성 평가 연구)

  • Bae Jeong-Hyo,;Ha Tae-Hyun,;Lee Hyun-Goo,;Kim Dae-Kyeong,
    • Journal of the Korean Institute of Gas
    • /
    • v.5 no.4 s.16
    • /
    • pp.21-26
    • /
    • 2001
  • Because of the continuous growth of energy consumption, and also tile tendency to site power lines and pipelines along the same routes, the close proximity of high voltage structures and metallic pipelines has become more and more frequent. Recently, the results of assessment about a system integrity are needed in korea also when a gas pipeline is running parallel with high voltage power line in same submarine tunnel, Therefore, we analyze the system integrity(AC corrosion of pipe, melting of pipeline coating, safety of insulation flange, especially cathodic protection system which are rectifier and CI(cathodic Isolator)) resulting from the influence of high voltage power system.

  • PDF

국내외 정보

  • Korea Electrical Manufacturers Association
    • NEWSLETTER 전기공업
    • /
    • no.93-19 s.92
    • /
    • pp.22-37
    • /
    • 1993
  • PDF

국내외 정보

  • Korea Electrical Manufacturers Association
    • NEWSLETTER 전기공업
    • /
    • no.94-19 s.116
    • /
    • pp.19-39
    • /
    • 1994
  • PDF

Analysis of Induced Voltage on the Gas Pipeline at the Fault in a Underground Power Cables (지중전력케이블에서 고장발생시 인근 가스배관에 유도되는 전압 해석)

  • Bae J. H.;Kim D. K.;Kim K. J.
    • Journal of the Korean Institute of Gas
    • /
    • v.4 no.3 s.11
    • /
    • pp.26-32
    • /
    • 2000
  • Because of the continuous growth of energy consumption, and also the tendency to site power lines and pipelines along the same routes, the close proximity of high voltage structures and metallic pipelines has become more and more frequent. Moreover, normal steady state and fault currents become higher as electric networks increase in size and power Therefore, there has been and still is a growing concern(safety of people marking contact with pipeline, risk of damage to the pipeline coating, the metal and equipment connected to pipeline, especially cathodic protection system) about possible hazards resulting from the influence of high voltage power system on metallic structures(gas pipeline, oil pipeline and water pipeline etc.). Therefore, we analyze the interference problems when the gas pipeline is buried with power cable in the same submarine tunnel. This paper present the results of the study about interference mechanism, AC corrosion limitation of safety voltage and analysis of induction voltage.

  • PDF

Land and Sea Cable Interconnections with HVDC Light

  • Gunnar, Asplund;Kjell, Eriksson;Ove, Tollerz
    • KIPE Magazine
    • /
    • v.6 no.4
    • /
    • pp.21-26
    • /
    • 2001
  • HVDC Light는 300MW에 이르는 전력을 가지고 있는 아불 성형된 DC Cable과 Voltage Source 컨버터에 기반을 둔 가장 최근의 HVDC 기술이다. HVDC Light 컨버터는 IGBT(Insulated Gate bi-polar Transistor)와 유효전력과 무효전력 사이의 고속 컨트롤을 위한 PWM(펄스 폭 변조)의 기능을 가지고 있다. HVDC Light 케이블은 압출 성형된 폴리머의 절연을 가진 케이블이며 직류 전압을 위해 특별히 개조되었다. 전력 범위 내에서 HVDC Light 컨버터와 케이블은 지중 또는 해저 송전 등에서도 송전전력을 위해 훌륭하게 조합될 수 있었다. 본 원고는 실제의 케이스로부터 얻은 경험지식으로, HVDC Light 기술의 조합을 사용해 해결된 문제점을 소개하고, HVDC Light의 장점을 설명하였다.

  • PDF