• Title/Summary/Keyword: 해양 탄성파탐사

Search Result 99, Processing Time 0.029 seconds

Broadband Seismic Exploration Technologies via Ghost Removal (도깨비파 제거를 통한 광대역 탄성파 탐사 기술)

  • Choi, Woochang;Pyun, Sukjoon
    • Geophysics and Geophysical Exploration
    • /
    • v.21 no.3
    • /
    • pp.183-197
    • /
    • 2018
  • In the delineation of geological structures using seismic exploration, it is very important to improve resolution of seismic data as well as accurate velocity model building and subsurface imaging. The resolution of seismic data can be enhanced by employing high-frequency energy sources or by applying deconvolution techniques in data processing. In marine seismic exploration, however, the main reason for degradation of resolution is the loss of specific frequency components due to ghosts. If we remove the ghosts, we can obtain broadband seismic data by avoiding frequency loss, and thus providing high-resolution subsurface images. Although ghosts can be properly filtered out in the data processing step, more effective broadband seismic technologies have been developing through the evolution of seismic instruments and the innovation of survey design. Overseas exploration companies developed brand-new configurations of receivers such as over/under streamer and variable-depth streamer, or ghost removal techniques using dual-sensor streamer to serve high-resolution imaging technologies. Unfortunately, neither broadband seismic instrument nor processing technique has been studied in Korea. In this paper, we introduce fundamental theories and current status of broadband seismic technologies to assist domestic researchers to study those technologies.

Geostatistical Interpretation of Sparsely Obtained Seismic Data Combined with Satellite Gravity Data (탄성파 자료의 해양분지 구조 해석 결과 향상을 위한 인공위성 중력자료의 지구통계학적 해석)

  • Park, Gye-Soon;Oh, Seok-Hoon;Lee, Heui-Soon;Kwon, Byung-Doo;Yoo, Hai-Soo
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.4
    • /
    • pp.252-258
    • /
    • 2007
  • We have studied the feasibility of geostatistics approach to enhancing analysis of sparsely obtained seismic data by combining with satellite gravity data. The shallow depth and numerous fishing nets in The Yellow Sea, west of Korea, makes it difficult to do seismic surveys in this area. Therefore, we have attempted to use geostatistics to integrate the seismic data along with gravity data. To evaluate the feasibility of this approach, we have extracted only a few seismic profile data from previous surveys in the Yellow Sea and performed integrated analysis combining with the results from gravity data under the assumption that seismic velocity and density have a high physical correlation. First, we analyzed the correlation between extracted seismic profiles and depths obtained from gravity inversion. Next, we transferred the gravity depth to travel time using non-linear indicator transform and analyze residual values by kriging with varying local means. Finally, the reconstructed time structure map was compared with the original seismic section given in the previous study. Our geostatistical approach demonstrates relatively satisfactory results and especially, in the boundary area where seismic lines are sparse, gives us more in-depth information than previously available.

Introduction to Submarine Power Cable Detection Technology (해저 전력 케이블 탐지 기술 소개)

  • Daechul Kim;Hyeji Chae;Wookeen Chung;ChangBeom Yun;Jong Hyun Kim;Jeonghun Kim;Sungryul Shin
    • Geophysics and Geophysical Exploration
    • /
    • v.27 no.1
    • /
    • pp.57-68
    • /
    • 2024
  • Offshore wind power is increasingly regarded as a viable solution for reducing greenhous emissions due to the construction of wind farms and their superior power generation efficiency. Submarine power cables play a crucial role in transmitting the electricity generated offshore to land. To monitor cables and identify points of failure, analyzing the location or depth of burial of submarine cables is necessary. This study reviewed the technology and research for detecting submarine power cables, which were categorized into seismic/acoustic, electromagnetic, and magnetic exploration. Seismic/acoustic waves are primarily used for detecting submarine power cables by installing equipment on ships. Electromagnetic and magnetic exploration detects cables by installing equipment on unmanned underwater vehicles, including autonomous underwater vehicles (AUV) and remotely operated vihicles (ROV). This study serves as a foundational resource in the field of submarine power cable detection.

Data Processing using Anisotropic Analysis for the Long-offset Marine Seismic Data of the East Sea, Korea (동해 해역 원거리 해양탄성파 탐사자료의 이방성 분석을 이용한 전산처리)

  • Joo, Yonghwan;Kim, Byoung-yeop
    • Geophysics and Geophysical Exploration
    • /
    • v.23 no.1
    • /
    • pp.13-21
    • /
    • 2020
  • The acquisition and processing of long-offset data are essential for imaging deep geological structures in marine seismic surveys. It is challenging to derive an accurate subsurface image by employing conventional data processing to long-offset data owing to the normal moveout (NMO) stretch and non-hyperbolic moveout phenomena induced by seismic anisotropy. In 2017, the Korea Institute of Geoscience and Mineral Resources conducted a simultaneous two-dimensional multichannel streamer and ocean-bottom seismic survey using a 5.7-km streamer and an ocean-bottom seismometer to identify the deep geological structure of the Ulleung Basin. Herein, the actual geological subsurface structure was obtained via the sequential iterative updating of the velocity and anisotropic parameters of the long-offset data obtained using a multichannel streamer, and anisotropic prestack Kirchhoff migration was performed using the updated velocity and anisotropic parameters as input parameters. As a result, the reflection energy in the long-offset traces, which showed non-hyperbolic moveout owing to seismic anisotropy, was well aligned horizontally and NMO stretches were also reduced. Thus, a more precise and accurate migrated image was obtained, minimizing the distortion of reflectors and mispositioned reflection energy.

A Pilot Study of Inhole Type CPTu from Model Tests (실내모형실험을 통한 인홀형 탄성파콘 시험의 적용성 분석)

  • Jang, In-Sung;Jung, Min-Jae;Kwon, O-Soon;Mok, Young-Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2C
    • /
    • pp.95-103
    • /
    • 2008
  • Seismic piezocone penetration tests (SCPTu) can be used to obtain dynamic properties of soils as well as cone resistance and penetration pore pressure. However, the SCPTu system can be hardly utilized in marine soils because it is difficult to install the source apparatus which generates the shear wave in offshore site. The authors developed an inhole type piezocone penetration test (CPTu) equipment which both source and receiver composed of bender elements were installed inside the rod located behind the cone. Therefore, it can be applicable to even an offshore site without any additional source apparatus. The objective of this paper is to investigate the practical application of inhole type CPTu by performing laboratory model tests using kaolinite as soft clay. The shear wave velocities of kaolinite soil were measured with time, and the effects of soil disturbance due to the installation of source and receiver were also examined for various distance between source and receiver.

Digital Processing for Multichannel Seismic Data(I) -Marine Reflection Data Processing- (다중채널 탄성파 탐사자료의 전산처리(I) - 해양반사파 자료처리 -)

  • 김기영;홍종국;주형태
    • The Journal of Engineering Geology
    • /
    • v.1 no.1
    • /
    • pp.85-108
    • /
    • 1991
  • Marine seismic processing is characterized by a great amount of data, several professional processing steps, and various parameters to be decided in each step. In general, adequate processing sequence and optimum parameters are obtained through test processing with sample set of data representing the whole group. The sequence and parameters are then applied in processing the whole data. In this paper, optimum processing sequence and parameters for the data acquired in Korean continental shelf are examined through test processing with real data. Finally, a good-quality migration section is produced using those sequence and parameters decided on the basis of the test results.

  • PDF

240 channel Marine Seismic Data Acquisition by Tamhae II (탐해2호의 240채널 해양탄성파 탐사자료취득)

  • Park Keun-Pil;Lee Ho-Young;Koo Nam-Hyung;Kim Kyeong-O;Kang Moo-Hee;Jang Seong-Hyung;Kim Young-Gun
    • Geophysics and Geophysical Exploration
    • /
    • v.2 no.2
    • /
    • pp.77-85
    • /
    • 1999
  • The 3-D seismic research vessel, Tamhae II, was built to raise up the probability of the hydrocarbon discovery in the Korean continental shelf and the first test survey was completed in the East Sea. During the survey, the 240 channel 2-D marine seismic data were acquired by the Korean flag vessel for the first time. Tamhae II has been equipped with source, receiver, recording equipment, and navigation equipment as well as an onboard processing system. The source is composed of four subarrays and each subarray has six airguns. Total airgun volume is 4578 $in^3$. The receiver consists of two sets of 3 km long 240 channel streamer. In the first survey, the successful acquisition of 2-D seismic data was accomplished. From the result of the data processing, we confirmed that the high quality seismic data were acquired. For the high quality data acquisition, technology of survey design and planning, operation of vessel and equipments and systematic quality control should be developed.

  • PDF

우리나라의 물리탐사 기술과 과제

  • Hyeon, Byeong-Gu
    • The Science & Technology
    • /
    • v.9 no.8 s.87
    • /
    • pp.23-27
    • /
    • 1976
  • 우리나라에서 본격적으로 물리탐사를 시도한것은 1958~1960년에 실시한 항공자력탐사로서 그후 현재까지 불과 20년이 지나지 않았다. 그간 물리탐사의 기술발전으로 자원탐사분야에 많은 공헌이 있었다. 현재까지 주로 적용된 분야는 철자원탐사를 위한 자력탐사, 지하수조사를 위한 전기비저항탐사동, 연등의 통화금속광물탐사를 위한 각종 전기탐사, 제3기층 지질구조와 땜공사, 공업단지조성등의 기반암조사, 그리고 광산의 갱내 출수조사등을 위한 탄성파탐사, 우라늄자원을 위한 방사능탐사, 그리고 해저지질 및 자원조사를 위한 해상물리탐사등이다. 이와 동시에 석탄층조사를 위한 전기탐사 및 Model연구자력탐사의 전산처리 적용, 그리고 광물 및 암석의 물리적 성질등 학술분야에 대한 기초연구도 계속하여 왔다. 우리나라에 있어 물리탐사의 적용조건은 비교적 험악한 지형, 복잡한 지질구조, 광상의 불규칙 또는 소규모의 발달과 산재등이다. 이와 같은 특징은 탐사해석의 정도를 높이기 위하여 보다 고도의 과학기술문제의 해결을 요구하고 있으며 이와 동시에 현대적 탐사방법과 연구개발로 대상자원의 탐사지역확대와 지하심부 탐사등이 당면과제이다. 기술과제로서는 석탄 및 기타자원에 대한 물리검층탐사, 경상계 지질구조구명을 위한 탄성파탐사 및 동력탐사의 적용, 항공자력, 전자 및 방사능탐사 및 해양의 각종물리탐사의 기술개발이 있으며 그외 탐사자료의 전산처리기술 및 지구과학의 기초연구등이 있다.

  • PDF

Development of Multichannel Marine Seismic Data Acquisition System and its Application (다중채널 해양탄성파탐사 시스템개발과 응용)

  • Shin, Sung-Ryul;Kim, Chan-Su;Yeo, Eun-Min;Kim, Young-Jun
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.144-145
    • /
    • 2005
  • In this study, we have developed the high resolution multichannel seismic data acquisition system and shallow marine seismic source. It is easy to operate our source system which utilizes piezoelectric transducer of high electrical power. According to water depth, survey condition and purpose, transducer number of source system can be easily changed in order to maximize field applicability. In the recording part, we used 24 bits and 8 channel high speed A/D board in order to achieve the improvement of data quality and the efficiency of data acquisition. The developed system was tested and varied with the data acquisition parameters such as source-receiver offset, and transducer number versus water depth for the field application.

  • PDF

Submarine Layer Structure By Seismic Reflection Survey Between Geoje Island And Namhae Island (탄성파 탐사로 본 거제도 남해도간의 해저지층 구조)

  • Song, Moo-Young;Jo, Kyu Chang
    • 한국해양학회지
    • /
    • v.13 no.1
    • /
    • pp.1-8
    • /
    • 1978
  • A seismic reflection Survey was carried out in the offshere area between Geoje Island and Namhae Island, utilizing the echosounder with the frequency 28KHz and thd Uniboom with the filter band 800∼2000Hz. The results show the submarine topography, sedimentary layer structure and the depth distribution of the base rock. The water depth of the sea in the survey area is less than 80m; up to 40m contour line the sea bottom surface has a slight dip(about 1/1000), while in the zone deeper than 40m the bottom topography has a irregular relief. The thickness of the whole sedimentary deposit is about 20∼70m and divided into 3 layers: Upper layer(A layer) with horizontal laminae, intermediate layer(B layer) with cross-bedding and groove structure, and lower layer(C layer) not showing any sedimentary structure on the seismic reflection profile. The surface of the base rock is deeper gradually in the south-eastern part of the survey area and extends to 140m depth. The vertical sediments sequences, composed of B layer and A layer, show the type of transgressive sequences. It is interpreted that B layer was formed at one period when the sea level was lower 40∼60 than the present and ince then, following the rising of the sea level, A layer was deposited.

  • PDF