• Title/Summary/Keyword: 해양조사측량

Search Result 52, Processing Time 0.029 seconds

Interaction between Coastal Debris and Vegetation Zone Line at a Natural Beach (자연 해안표착물과 배후 식생대 전선의 상호 작용에 관한 연구)

  • Yoon, Han Sam;Yoo, Chang Ill
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.17 no.3
    • /
    • pp.224-235
    • /
    • 2014
  • Changes in the interactions among incident ocean water waves, coastal debris (marine debris), and the back vegetation zone line on a natural sandy beach on the island of Jinu-do in the Nakdong river estuary were investigated. The study involved a cross-sectional field survey of the beach, numerical modeling of incident ocean water waves, field observations of the distribution of coastal debris, and vegetation zone line tracking using GPS. The conclusions of this study can be summarized as follows: (1) The ground level of the swash zone (sandy beach) on Jinu-do is rising, and the vegetation zone line, which is the boundary of the coastal sand dunes, shows a tendency to move forward toward the open sea. The vegetation zone line is developing particularly strongly in the offshore direction in areas where the ground level is elevated by more than 1.5 m. (2) The spatial distributions of incident waves differed due to variations in the water depth at the front of the beach, and the wave run-up in the swash zone also displayed complex spatial variations. With a large wave run-up, coastal debris may reach the vegetation zone line, but if the run-up is smaller, coastal debris is more likely to deposit in the form of an independent island on the beach. The deposited coastal debris can then become a factor determining which vegetation zone line advances or retreats. Finally, based on the results of this investigation, a schematic concept of the mechanisms of interaction between the coastal debris and the coastal vegetation zone line due to wave action was derived.

Erosion and Recovery Processes in Haeundae Beach by the Invading Typhoon Chaba in 2016 (2016년 태풍 차바 내습 전후의 해운대 해빈의 침식과 회복 과정)

  • Lee, Young Yun;Chang, Tae Soo
    • Journal of the Korean earth science society
    • /
    • v.40 no.1
    • /
    • pp.37-45
    • /
    • 2019
  • In spite of continued nourishments, Haeundae Beach in Busan has been suffering from erosion, this being caused by the increased wave energy due to global warming and intermittent typhoon reported by previous works. In the meantime, the typhoon Chaba hit Basan in October 2016. In order to investigate the effects of the typhoon in beach erosion and how fast the beach recovered after the typhoon, repeated beach profiling using a VRS-GPS system was carried out, and the grain size analyses for surface sediments sampled on the beach were conducted. Immediately after the typhoon invasion, Haeundae beach was eroded by 1.4 m in average height. The mean high tide lines were retreated back by 12 m, and beach slope became gentler from $3.8^{\circ}$ to $1.7^{\circ}$. The mean grain sizes of surface sediments became coarser from $1.6{\Phi}$ to $1.2{\Phi}$ after two months, and the sorting well sorted. After two months of typhoon landfall, the mean high tide lines have recovered by 85%, and the beach topography almost recovered. This suggests that the impact of typhoons on Haeundae beach erosion is negligible, and the relaxation time is shorter than that of other beaches.

Evaluation of Depth Measurement Method Based on Spectral Characteristics Using Hyperspectrometer (초분광 스펙트로미터를 활용한 분광특성 기반의 수심 측정 기법 적용성 검토)

  • You, Hojun;Kim, Dongsu;Shin, Hyoungsub
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.2_1
    • /
    • pp.103-119
    • /
    • 2020
  • Recently, the rapid redeposition and erosion of rivers artificially created by climate change and the Four Rivers Restoration Project is questionable. According to the revised law in Korea, the river management agency will periodically carry out bed changes surveys. However, there are technical limitations in contrast to the trend of increasing spatial coverage, density and narrowing of intervals. National organizations are interest in developing innovative bed changessurvey techniquesfor efficiency. Core of bathymetry survey is to measure the depth of rivers under a variety of river conditions, but that is relatively more risky, time-consuming and expensive compared to conventional ground surveys. To overcome the limitations of traditional technology, echo sounder, which has been mainly used for ocean depth surveying, has been applied to rivers. However, due to various technical limitations, it is still difficult to periodically investigate a wide range of areas. Therefore, technique using the remote sensing has been spotlighted as an alternative, especially showing the possibility of depth measurement using spectral characteristics. In this study, we develop and examine a technique that can measure depth of water using reflectance from spectral characteristics. As a result of applying the technique proposed in thisstudy, it was confirmed that the measured depth and the correlation and error corresponding to 0.986 and 0.053 m were measured in the depth range within 0.95 m. In the future, this study could be applied to the measurement of spatial depth if it is applied to the hyperspectral sensor mounted on the drone.

Variability Of Tidal Range At Inchon (인천의 조차 변동)

  • Hahn, Sangbok
    • 한국해양학회지
    • /
    • v.15 no.2
    • /
    • pp.123-128
    • /
    • 1980
  • Variabilities of tidal range at Inchon were described based on observed values. Relationships between tidal ranges and harmonic costants of tide were also examined. Fortnightly variation is predominant and its range is 571.3cm. Mean of maximum spring range(ΔH/sun max/) is 887.2cm and that of minimum neap range(ΔH/sun min/) is 315.9cm. Mean tidal range(ΔH) is 634.3cm. Diurnal inequality is shown about 141cm on an average and monthly inequality is also shown about 100cm. Yearly inquality appears with a range of about 35cm, maxima in March and September, and minima in June and December. There may exist 18 1 years periodicity with a range of about 45cm. There are some relationships between ridal ranges and amplitudes of M$\_$2/ and S$\_$2/, such as ΔH=2.172 H$\_$m/, ΔH$\_$max/=3.043 H$\_$m/, ΔH$\_$min/=1.071 H$\_$m/, ΔH$\_$max/=2.198 (H$\_$m/ + H$\_$s/), and ΔH$\_$min/=1.740 (H$\_$m/ - H$\_$s/).

  • PDF

Case Study of GIS-based High-Resolution Coastal Mapping & Analysis at the Manlipo Beach (GIS를 통한 만리포 해변의 정밀 육도-해도 접합 및 분석)

  • Kim, Jin-Ah;Shim, Jae-Seol;Lim, Hak-Soo;Min, In-Ki
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2008.06a
    • /
    • pp.461-464
    • /
    • 2008
  • 연안에서의 태풍 해일에 의한 침수범람 지역 예측을 위하여 GIS를 통한 정밀 육도-해도 접합 및 분석을 만리포 해변을 대상으로 시범 수행하였다. 만리포 해변의 정밀 육도-해도 접합을 위하여 고해상도 지상 LIDAR 시스템의 시범 측량 자료와 국토지리정보원의 수치지형도, 국립해양조사원의 수치해도 수심자료 및 한국 주변해역의 30초격자 수심자료를 사용하였다. 또한 평균해수면 산정을 위하여 만리포에 설치된 수압식파고계 조위자료와 해변의 표척을 통한 목측 관측을 통한 조위자료를 활용하였다. 다양한 자료의 GIS 기반 육도-해도 접합 및 분석을 통한 정밀 지형도 구축 기술은 태풍 해일에 의한 침수범람 예측을 위한 정밀 격자 수치모델의 입력 자료로 활용되어 침수 범람 예측 결과의 재해도(Hazard Map) 작성이 가능하고, 나아가 침식 퇴적 등의 지속적인 해안선 변화 모니터링에 활용될 수 있다.

  • PDF

Characteristics of Beach Change and Sediment Transport by Field Survey in Sinji-Myeongsasimni Beach (신지명사십리 해수욕장에서 현장조사에 의한 해빈변화와 퇴적물이동 특성)

  • Jeong, Seung Myong;Park, Il Heum
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.5
    • /
    • pp.594-604
    • /
    • 2021
  • To evaluate the causes of beach erosion in Sinji-Myeongsasimni Beach, external forces, such as tides, tidal currents, and waves, were observed seasonally from March 2019 to March 2020, and the surface sediments were analyzed for this period. In addition, the shoreline positions and beach elevations were regularly surveyed with a VRS GPS and fixed-wing drone. From these field data, the speed of the tidal currents was noted to be insufficient, but the waves were observed to af ect the deformation of the beach. As the beach is open to the southern direction, waves of heights over 1 m were received in the S-SE direction during the spring, summer, and fall seasons. Large waves with heights over 2 m were observed during typhoons in summer and fall. Because of the absence of typhoons for the previous two years from July 2018, the beach area over datum level (DL) as of July 2018 was greater by 30,138m2 compared with that of March 2019, and the beach area as of March 2020 decreased by 61,210m2 compared with that of March 2019 because of four typhoon attacks after July 2018. The beach volume as of March 2019 decreased by 5.4% compared with that of July 2018 owing to two typhoons, and the beach volume as of September 2019 decreased by 7.3% because of two typhoons during the observation year. However, the volume recovered slightly by about 3% during fall and winter, when there were no high waves. According to the sediment transport vectors by GSTA, the sediments were weakly influxed from small streams located at the center of the beach; the movement vectors were not noticeable at the west beach site, but the westward sediment transport under the water and seaward vectors from the foreshore beach were prominently observed at the east beach site. These patterns of westward sediment vectors could be explained by the angle between the annual mean incident wave direction and beach opening direction. This angle was inclined 24° counterclockwise with the west-east direction. Therefore, the westward wave-induced currents developed strongly during the large-wave seasons. Hence, the sand content is high in the west-side beach but the east-side beach has been eroded seriously, where the pebbles are exposed and sand dune has decreased because of the lack of sand sources except for the soiled dunes. Therefore, it is proposed that efforts for creating new sediment sources, such as beach nourishment and reducing wave heights via submerged breakwaters, be undertaken for the eastside of the beach.

A Comparison of the Gravimetric Geoid and the Geometric Geoid Using GPS/Leveling Data (GPS/Leveling 데이터를 이용한 기하지오이드와 중력지오이드의 비교 분석)

  • Kim, Young-Gil;Choi, Yun-Soo;Kwon, Jay-Hyoun;Hong, Chang-Ki
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.2
    • /
    • pp.217-222
    • /
    • 2010
  • The geoid is the level surface that closely approximates mean sea level and usually used for the origin of vertical datum. For the computation of geoid, various sources of gravity measurements are used in South Korea and, as a consequence, the geoid models may show different results. however, a limited analysis has been performed due to a lack of controlled data, namely the GPS/Leveling data. Therefore, in this study, the gravimetric geoids are compared with the geodetic geoid which is obtained through the GPS/Leveling procedures. The gravimetric geoids are categorized into geoid from airborne gravimetry, geoid from the terrestrial gravimetry, NGII geoid(geoids published by National Geographic Information Institute) and NORI geoid(geoi published by National Oceanographic Research Institute), respectively. For the analysis, the geometric geoid is obtained at each unified national control point and the difference between geodetic and gravimetric geoid is computed. Also, the geoid height data is gridded on a regular $10{\times}10-km$ grid so that the FFT method can be applied to analyze the geoid height differences in frequency domain. The results show that no significant differences in standard deviation are observed when the geoids from the airborne and terrestrial gravimetry are compared with the geomertric geoid while relatively large difference are shown when NGII geoid and NORI geoid are compared with geometric geoid. Also, NGII geoid and NORI geoid are analyzed in frequency domain and the deviations occurs in long-wavelength domain.

A Study on Shoreline Change in Hampyung Bay, Southwestern Coast of korea I. Sea-Cliff Erosion and Retreat (한국 서해 남부 함평만의 해안선 변화 연구 I. 해안절벽의 침식과 후퇴)

  • ;;;;;S-Y YANG
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.7 no.3
    • /
    • pp.148-156
    • /
    • 2002
  • The coastline of Hampyung Bay, southwestern coast of Korea, was examined and measured in the field for the understanding of geomorphic changes and sea-cliff erosion processes. The Hampyung-Bay coastline is characterized by steep-face slope and soft soil and/or intensively weathered rock composition. Saw teeth-shaped coastline, and relict weathered basement-rock and "Island Stack" exposed on the beach surface are peculiar geomorphic features indicating active sea-cliff erosion. The coastline in the study area is continuously retreating with the following cyclic process: erosion of cliff base, gravitational landslide or mass wasting, formation of talus, and then erosion and removal of talus. In this study, sea-level rise during summer in the west coast of Korea is suggested as one of the key factors fur the removal of soil taluses and, thereby, accelerating sea-cliff erosion.f erosion.

Rate of Shoreline Changes for Barrier Islands in Nakdong Estuary (낙동강 하구역 울타리 섬의 해안선 변화율)

  • Kim, Baeck-Oon;Khim, Boo-Keun;Lee, Sang-Ryong
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.4
    • /
    • pp.361-374
    • /
    • 2007
  • This study presents long-term shoreline changes of barrier islands in Nakdong Estuary using aerial photographs. Digital photogrammetry is used for constructing mosaic aerial photographs, which yield six sets of shoreline data ranging from 1975 to 2001. Three kinds of rate of shoreline changes such as EPR (End Point Rate), JKR(Jackknife Rate) and LRR (Linear Regression Rate) are computed by a GIS-based Digital Shoreline Analysis Systems. There have been remarkable changes both in Sinja Island and Doyodeung. Western part of Sinja Island advanced seaward, whereas eastern part retreated landward, giving appearance that the island rotated counterclockwise. Rate of shoreline changes at both ends reach 20 m/yr. Doyodeung occurred newly in front of Baekhapdeung in 1993, resulting in shoreline advance in a rate of 40 m/yr. Rate of shoreline changes differ both within and between barrier islands and have a tendency to increase eastward. To understand this spatial variability of rate of shoreline changes, it is suggested to make a detailed investigation into the impact of coastal development on hydrodynamic and sedimentary processes.

A Display System of Realtime 3D Bathymetry Using Remote Sensing Exploration and Cloud Computing Technologies (원격탐사와 클라우드 컴퓨팅 기술을 활용한 실시간 3D 해저지형의 디스플레이 시스템)

  • Lee, Jong-Hoon;Park, Man-Gon
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.2
    • /
    • pp.152-159
    • /
    • 2014
  • Recently. utilization of remote sensing exploration and cloud computing has been extended to efficient measurement, store, and update of bathymetry map data according to cloud computing technology. In the field of real ocean, water depth measurements and measurement data management, distribution, and display equipment for the development and dissemination have generated a lot of time and cost. To improve these problems, through real-time three-dimensional display system at this location, we can determine the importance of measurement activities, and reduce the time and cost of measurement activities. Data measured from marine probe vessels and remote sensing exploration equipments and other various channels can be handled and managed. In this paper, we propose a realtime three-dimensional display system through the depth measurements from remote sensing exploration. The proposed real-time three-dimensional display system can be effectively applied in the field of measurement of the topographical survey of the land as well as bathymetry of the sea.