• Title/Summary/Keyword: 해양방류관

Search Result 24, Processing Time 0.035 seconds

Diffusion Analysis for Optimal Design of Ocean Outfall System (해양방류시스템 최적설계를 위한 확산해석)

  • Jung, T.S.;Kang, S.W.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.12 no.3
    • /
    • pp.124-132
    • /
    • 2009
  • The optimal type and discharging position of ocean outfall of wastewater have been determined by hydrodynamic modeling, near-field dilution modeling, and far-field dispersion modeling. Tide and tidal currents have been simulated by a finite element hydrodynamic model showing good agreements with field observations. Based on the hydrodynamic simulation results candidates of ocean outfall position were preliminary determined. Submerged single port and submerged multi-port diffuser were selected as discharging system alternatives and finally designed by considering tide, tidal currents and water depth. Initial dilution of wastewater discharged from the designed ports has been estimated by CORMIX system. A 2-dimensional random-walk dispersion model has been employed to simulate far-field dispersion of discharged wastewater.

  • PDF

Initial Mixing Analysis of Ocean Outfalls Discharged into Density Stratified Flowing Ambients (밀도성층화된 흐름수역으로 방류되는 해양방류관의 초기확산해석)

  • Lee, Jae-Hyeong;Seo, Il-Won
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.2
    • /
    • pp.207-217
    • /
    • 2000
  • A numerical model is applied to analyze the mixing characteristics of an axisymmetric turbulent buoyant jet discharged into flowing stratified ambients. The numerical model is a Gaussian-vortex model which incorporates the effects of the vortex pair known as the representative characteristics of far-field in flowing ambients. Six ocean outfalls that have field data for the initial dilution at the water surface are selected for testing the applicability of the developed numerical model. The comparisons of the observed initial dilutions and the simulated ones show that the developed numerical model could be used for the analyses of the initial mixings induced by the sewage diffuser discharged into the ocean.

  • PDF

An Analysis on Influences of Seasonal and Tidal Changes to Outfall Design and Management (조석이 방류관의 설계 및 운영에 미치는 영향 분석)

  • Kim, Ji-Yeon;Lee, Joong-Woo
    • Journal of Navigation and Port Research
    • /
    • v.28 no.3
    • /
    • pp.259-268
    • /
    • 2004
  • For the last years, it has become hot issue such as disposal of the treated wastewater, which caused by increment of a population and industrial development at the coastal areas. The ocean outfall system discharges primary or secondary treated effluent into coastline or at the deep water, or between these two. The effluent, which has a density similar to that of fresh water, rises to the see, surface forming plume or jet, together with entraining the surrounding salt water and becomes very dilute. This paper deals ocean outfall design which effects to decision-making about marine environment management and wastewater treatment. In order to make predictions of dilution of discharged water and the trajectory of a plume, CORMIX has been used considering several elements including a seasonal and tidal changes. These solutions are strung together to provide basic data and general drawings for effective management of outfall.

Comparison of Model Predictions on Ocean Ouffalls (해양방류에 관한 모형의 비교연구)

  • Jeong, Yong-Tae;Jo, Ik-Jun;Jang, Yeong-Ryul;Park, Chi-Hong
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.5
    • /
    • pp.613-620
    • /
    • 1998
  • Field and laboratory studies of the near field behavior of the San Francisco ocean outfall were reported. The data sets cover broad ranges of discharge conditions and oceanic conditions, and are associated with a typical type of outfall discharges with multiport diffusers. The laboratory data sets were obtained in density-stratified towing tanks to replicate the field tests. Model studies of wastefield behavior using these data sets were predicted by the mathematical models UM, UDKHDEN, RSB, and CORMIX2 for minimum dilution, the height to top of wastefield, and wastefield thickness. In this paper, the results are discussed and compared measurements with mathematical model predictions. The hydraulic model studies reproduced the major features observed in the field. It also afforded considerable insight into the mechanics of mixing of multiport risers which could have been obtained neither from the field test nor the mathematical models.

  • PDF

Prediction of Near-Field Dilution Changes Due to Treatment Capacity Expansion of Masan-Changwon Municipal Wastewater Treatment Plant (마산.창원 하수종말처리장 증설에 따른 근역희석률변화 예측)

  • 유승협
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.12 no.2
    • /
    • pp.53-69
    • /
    • 2000
  • For the case of the capacity increase of Masan-Changwon wastewater treatment plant, the changes of near-field dilution rates due to the increased discharges into Masan Bay from the submerged multipart-diffuser were predicted by using CORMIX model. As the increase of wastewater discharges from currently 280,000 m3f day to 720,000 m3fday by 2011, the dilution rates become much lower than the present rates. To enhance the reduced dilution rates, the engineering design changes of diffuser length and alignment were considered as an optimal engineering option. According to the results of the model simulations for these changes, the dilution rates were increased in the strong ambient current of spring tide, but they were not affected by these changes in the weak current of neap tide in Masan Bay. From the analysis of oceanographic survey data, new outfalls sites have been searched. A promising outfalls site is selected and proposed on the basis of maximum obtainable dilution rates predicted by the model simulations.

  • PDF

Requirements for Regulatory Mixing Zone on Outfall design and positioning (방류관의 설계 및 배치에서의 법적 혼합역의 필요)

  • Kim Jj-Yeon
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.11a
    • /
    • pp.153-158
    • /
    • 2004
  • The numerous investments have been introduced to design and assess mixing zone characteristics of wastewater discharges to the ocean. Specially It strive to meet water quality standard for persistent and bio-accumulative chemical contaminants at the point of discharge through continual improvement pollution prevention measures and other voluntary measures in the developed country. The goals that of this paper are to emphasize the regulatory mixing zone is defined as an allocated impact zone where the numeric water quality criteria may be exceeded as long as acutely toxic conditions are prevent. Furthermore, mixing zones be limited to an area or volume as small as practicable that with not interfere with the designated uses or the established community of aquatic life in the segment for which the uses are designated and the shape be a simple configuration that is easy to locate in the body of water and avoids impingement on biologically important areas and the shore hugging plumes should be avoided This results should be used with caution in evaluation the mixing zone characteristics of a discharge and only in conjunction with information from the effective marine outfall design as well as for the sound harbour design. Thus the numerical investigation using CORMIX has been performed to show the regulatory mixing zone in the near and far field of the marine outfall.

  • PDF

Mixing Zone Analysis on Outfall Plume considering Influence of Temperature Variation (수온 변화의 영향을 고려한 방류관 플룸의 혼합역 분석)

  • Kim Ji-Yeon;Lee Joong-Woo
    • Journal of Navigation and Port Research
    • /
    • v.28 no.10 s.96
    • /
    • pp.947-953
    • /
    • 2004
  • As a large scale port development in coastal waters proceeds step by step and populations in the vicinity of port are getting increased, the issue on 'how to dispose the treated municipal water and wastewater in harbor' brings peoples' concern. The submarine outfall system discharges the primary or secondary treated effluent at the coastline or in deep water, or between these two. The effluent, which has a density similar to that of fresh water, rises to the sea surface forming plume or jet, together with entraining the surrounding sea water and becomes very dilute. We intended in this paper to investigate the impact on dilution of effluent and the behavior of flume under the conditions of the seasonal and spatial temperature variations, which have not been noticeable in designing effective marine outfall system. To predict and analyze the behaviour and dilution characteristics of plume not just with the effluent temperature, but also with the seasonal variation of temperature of surround water, CORMIX( Cornell Mixing Zone Expert System)-GI have been applied. The results should be used with caution in evaluation the mixing zone characteristics of discharged water. We hope to help for the effective operation of outfall system, probable outfall design, protection of water quality, and warm water discharges from a power plant, etc.

Analysis on the Characteristics of the Pollutant Load in Chinhae-Masan Bay (진해.마산만 오염부하량의 특성분석)

  • 조홍연;채장원
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.10 no.3
    • /
    • pp.132-140
    • /
    • 1998
  • The quantitative analysis on the pollutants loads (PL) has hardly been carried out and calibration-verification process of the water quality modeling has been conducted under the restricted condition because the observed PL data are not sufficient. In this study, the PLs were measured at the 22 streams and the effluents site in the Masan-Changwon watersheds. The release rates from sediment were also measured at the three points in the Bay. The PLs from the Masan and Changwon cities and from multi-port diffuser(effluents discharge) amount to 80∼90% and 20∼25% of the PL in Chinhae-Masan Bay, respectively. As the amounts of the sediment released pollutants are the same order of the PLs form the watersheds, the pollutants released from the sediment is one of the main factors that might cause the seasonal variation of the water quality, which is degraded in summer and relatively good in winter.

  • PDF

Seasonal Variations of Near-Field Dilutions of Submerged Multiport-Diffuser Discharges in Masan Bay (마산만 수중 방류수의 계절별 근역희석률 변화)

  • 강시환;박광순
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.11 no.2
    • /
    • pp.116-126
    • /
    • 1999
  • In this paper, we have studied the seasonal vanatIons of near-field dilutions of wastewater discharged from the submerged mutiport-diffuser in Masan Bay. Seasonal changes of temperature and salinity, and tidal currents were measured at 16 stations in Masan Bay. Based on the observed ambient field data, the seasonal changes of near-field dilutions due to ambient current and density fields were calculated by CORMIX model. Because of the shallow ambient water depth of 15 m, the density profiles are isopycnal in autumn and winter seasons, in which the dilution factors were the highest, 168 with the strong spring-tidal current and 110-120 with the weak neap-tidal current. As the season changes from spring to summer, the dilution factors are considerably reduced by the factor of 2 as the thermocline is getting deepened up to Sm in depth in summer. In the case of a weak ambient current, the dilution factor in summer was reduced to 1/4 of the dilution in winter. However, with strong ambient current the difference between summer and winter dilutions becomes relatively small by 30%. The results indicate that the seasonal variation of near-field dilution is very large up to 4 times with a weak neap-tidal current, but its variations become small under a strong ambient current of spring tide in MasanBay.

  • PDF