• Title/Summary/Keyword: 해안선 관측

Search Result 102, Processing Time 0.027 seconds

Numerical Analysis of the Grand Circulation Process of Mang-Bang Beach-Centered on the Shoreline Change from 2017. 4. 26 to 2018. 4. 20 (맹방해빈의 일 년에 걸친 대순환과정 수치해석 - 2017.4.26부터 2018.4.20까지의 해안선 변화를 중심으로)

  • Cho, Young Jin;Kim, In Ho;Cho, Yong Jun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.3
    • /
    • pp.101-114
    • /
    • 2019
  • In this study, we carry out the numerical simulation to trace the yearly shoreline change of Mang-Bang beach, which is suffering from erosion problem. We obtain the basic equation (One Line Model for shoreline) for the numerical simulation by assuming that the amount of shoreline retreat or advance is balanced by the net influx of longshore and cross-shore sediment into the unit discretized shoreline segment. In doing so, the energy flux model for the longshore sediment transport rate is also evoked. For the case of cross sediment transport, the modified Bailard's model (1981) by Cho and Kim (2019) is utilized. At each time step of the numerical simulation, we adjust a closure depth according to pertinent wave conditions based on the Hallermeier's analytical model (1978) having its roots on the Shield's parameter. Numerical results show that from 2017.4.26 to 2017.10.15 during which swells are prevailing, a shoreline advances due to the sustained supply of cross-shore sediment. It is also shown that a shoreline temporarily retreats due to the erosion by the yearly highest waves sequentially occurring from mid-October to the end of October, and is followed by gradual recovery of shoreline as high waves subdue and swells prevail. It is worth mentioning that great yearly circulation of shoreline completes when a shoreline retreats due to the erosion by the higher waves occurring from mid-March to the end of March. The great yearly circulation of shoreline mentioned above can also be found in the measured locations of shoreline on 2017.4.5, 2017.9.7, 2017.11.7, 2018.3.14. However, numerically simulated amount of shoreline retreat or advance is more significant than the physically measured one, and it should be noted that these discrepancies become more substantial for the case of RUN II where a closure depth is sustained to be as in the most morphology models like the Genesis (Hanson and Kraus, 1989).

Shoreline Change Model in Haeundae Beach (해운대 해빈의 해안선변형 예측 모형)

  • 박일흠;이종섭
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.1 no.1
    • /
    • pp.50-62
    • /
    • 1989
  • Shoreline change of Haeundae beach was predicted by one-line model considering interaction of seawalls and longshore variation of wave height . Wave deformation was calculated by combined wave refraction-diffraction model . In this shoreline change model, empirical constants and offshore sediment transport rate are treated as calibration parameters, and the calculated results are in good agreement with the observed data.

  • PDF

Predicting Long-Term Shoreline Change Due to the Construction of Submerged Breakwaters in Manseongri Beach (잠제설치에 따른 만성리해빈에서 해안선의 장기변화 예측)

  • Park, Il Heum;Kang, Seong Wuk;Kang, Tae-Soon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.5
    • /
    • pp.527-535
    • /
    • 2016
  • The Manseongri Coast meets the sea on the southeast and is composed of coarse sediment as a mesotidal beach. The waves that strike the beach are stronger than the tides or tidal currents as external forces of beach deformation. Storm waves frequently reach significant wave heights of 2-3m and hit in spring and summer, leaving the sea calm during fall and winter. Incident waves reach remarkable heights that correspond with observed shoreline changes. The shoreline erodes in spring and summer due to these strong waves but recovers in fall and winter as a result of the more moderate waves. On the basis of these observed results, a numerical calibration for experiments on shoreline change was established. Results revealed that according to hindcast data, calculated shoreline changes agreed with the observed shoreline, with a minimum RMS error of 1.26m with calibration parameters $C_1=0.2$ and $C_2=1C_1$. Using these calibration parameters, long-term shoreline change was predicted after the construction of submerged breakwaters and jetties, etc. The numerical model showed that the shoreline would move forward by 5-15m behind the submerged breakwaters and recede by 5-15m north of the structure.

Shoreline Change Based on Long Term Wind Statistics in Suyeong Bay (장기 바람 관측 통계치에 의한 수영만의 해안선 변화)

  • Kang, Hyo-Jin
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.6 no.2
    • /
    • pp.150-156
    • /
    • 1994
  • Shoreline change due to the littoral drift in Suyeong bay, especially the Gwanganri and Haeundae beaches, was investigated. Average monthly frequency. speed. and direction of winds blowing from between east and south for the last 15 years were analysed, and offshore significant waves were hindcasted using the JONSWAP model. Wave refractions, shoaling, and breaking weir also investigated for the calculation of littoral drift. At the Gwanganri beach major longshore transport of sands occurs from the southwest to the northeast and the shoreline seems to advance in the northeast while it recedes in the southwest. At the Haeundae beach the sands mainly move from the east to the west and the shoreline retreats in the east and advances in the west.

  • PDF

Field Observations of Spatial Structure of Hydrodynamics Including Waves and Currents in the Haeundae Coast (해운대의 파랑 및 흐름 구조의 특성파악을 위한 현장 관측실험)

  • Do, Kideok;Yoo, Jeseon;Lee, Hee Jun;Do, Jong-Dae;Jin, Jae-Youll
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.27 no.4
    • /
    • pp.228-237
    • /
    • 2015
  • Field observations were conducted to collect hydrodynamic and morphological data, which are needed to account for mechanisms of bathymetry changes caused by physical forcings, in Haeundae beach. In order to quantitatively describe characteristics of wave transformations and current patterns in space in winter and summer, in-situ sensors for measuring waves and current profiles were installed at three locations in the cross-shore direction and also three locations in the along-shore direction. As for the results of wave measurements, waves with main direction from the east dominate in winter while waves are incident from the S and the ESE in summer. Analysis of current data reveals that currents over the study domain are considerably influenced by a pattern of tidal motions, thereby, mainly oscillating in the direction of tidal currents, i.e., east-west directions, in both winter and summer. Currents tend to be influenced by local bathymetry in the shallow water region, with the direction changed along the depth contours and the magnitude reduced as they approach the shoreline. The results analysed from the hydrodynamic data through this study can be further combined with the morphological and bathymetry data, leading to the quantification of seasonal sediment transport rates and sand budget changes.

Laboratory Observations of Nearshore Flow Patterns Behind a Single Shore-Parallel Submerged Breakwater (해안선에 평행한 단일 잠제 후면 연안 흐름패턴 관측 수리실험)

  • Choi, Junwoo;Roh, Min
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.3
    • /
    • pp.139-146
    • /
    • 2017
  • In order to understand the efficacy of submerged breakwater constructed for the beach protection, laboratory experiments were carried out by observing the characteristics of flow around a single shore-parallel submerged breakwater. The velocity field near the shoreline was measured by utilizing the LSPIV (Large-Scale Particle Image Velocimetry) technique, and mean surface and wave height distributions were observed around the submerged breakwater, according to various combinations of incident waves and submerged breakwaters. In this experiment, it was found that the mean flow pattern behind the submerged breakwater was determined by the balance among the gradients of mean water surface and excess wave-momentum flux (i.e., radiation stress tensors) which interact with the wave-induced current developed by the gradients on the rear and the side of the submerged breakwater. The divergent and convergent flow patterns behind the submerged breakwater (i.e., accretion and erosion response) of the numerical study of Ranasinghe et al.(2010) were observed in the measured velocity distributions, and their empirical formula mostly agreed with the experimental results. However, for some cases in this experiment, it was difficult to say that the flow pattern was one of them and was agreed with the empirical formula.

Characteristics of Tidal Beach and Shoreline Changes in Chonsu Bay, West Coast of Korea (한반도 서해 천수만의 해안선 변화 및 조간대 해빈 특성)

  • Ryu Sang-Ock;Chang Jin-Ho
    • Journal of the Korean earth science society
    • /
    • v.26 no.6
    • /
    • pp.584-596
    • /
    • 2005
  • Morphology, surface sediments, sedimentation rates and sea-cliff erosion have been monitored, for one year to investigate the shoreline changes and tidal beach characteristics in Cheonsu Bay along the west coast of Korea. The seacliff of the bay consists of intensively weathered sedimentary rocks and soft soil, showing an erosion range of $-58.9\~73.3cm/yr$ by a weak wave forcing. Active sea-cliff erosions are recognized by peculiar geomorphic features, including saw teeth-shaped coastline, gravels, relict weathered basement-rock and 'Island Stack' exposed on the high-tide beach surface. The beach sediments show low compositional maturity at the south and north headlands and gradually high towards the central part. This observation seems to be caused by the fact that beach sediments are to originate from the both headlands in the study area and then transported by long-shore current associated with a wave action.

A Study on Delta Processes at the Estuary of Nak-Dong River (낙동강 하구 사주 발달에 관한 연구)

  • Kim Sang-Ho;Shin Seung-Ho;Yang Sang-Yong;Lee Joong-Woo
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.6 no.3
    • /
    • pp.26-36
    • /
    • 2003
  • Collected and analyzed the coastal processes at the estuary of Nak-Dong river and its near coastal area from the history of field measurements. Introduced a numerical model to predict three dimensional topographical change which are evaluated from the nearshore wave and the wave induced current fields for the objective area, and later it were related to the development of beach and shoals. With the comparison between measured and calculated, we found that the changes on the coastline and sand spit and bar development are induced not only by artificial forces due to the construction of river dike, but also by the strong impact of wave induced current. In future days, it is expected that coastline change and sand bar development at the lee side of Jinwoo-Deung and at the front of Dadae beach.

  • PDF

Analysis on the Characteristics of Nearshore Bars (연안사주의 특성해석)

  • 이철응
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.8 no.1
    • /
    • pp.61-71
    • /
    • 1996
  • The objective of this paper is to analyze the characteristics of the nearshore bars using the long-term measured data of cross-shore sediment transport for Duck beach, North Calolina, USA. The effect of outer bars are directly included in the analysis to understand the characteristics of the sequential nearshore bars. Many parameters related to the nearshore bars are presented by the simple relationship. It is found that the nearshore inner bars generally move offshore as time goes. After the outer bars are formed at some position, however, the inner bars start to move landward with time and outer bars become inner bar again. Also it is shown that the seasonal characteristics of inner bars are distinctly different according as the outer bar exists or not.

  • PDF

Performance Test of Parabolic Type Equilibrium Shoreline Formula Using Wave Data Observed in East Sea (동해 파랑관측 자료를 활용한 포물선형 평형해안선 식의 타당성 조사)

  • Lim, Chang Bin;Lee, Jung Lyul
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.2
    • /
    • pp.123-130
    • /
    • 2018
  • The present study investigated the validity of an equilibrium shoreline empirical formula for real phenomena. Among three types of equilibrium shoreline formulas, Hsu's parabolic type static formula was employed, which is well-known and the most practical for shoreline estimation after coastal or harbor structure construction. The wave data observed at Maengbang beach and the CERC formula on longshore sediment transport were used in the present investigation. A comparison study was only conducted for the case of a shoreline change after the construction of a groyne. Reasonable agreement was seen between the observed wave data and the data obtained under a wave angle spreading function S = 3.5. However, significant changes were observed when S increased. Thus, careful application is required when using Hsu's formula.