• Title/Summary/Keyword: 해석 기하학

Search Result 266, Processing Time 0.02 seconds

RC Wall under Axial Force and Biaxial Bending Moments (축력과 면내 및 면외 휨모멘트를 받는 철근콘크리트 벽체)

  • 박홍근
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.4
    • /
    • pp.113-124
    • /
    • 1998
  • Numerical study using nonlinear finite element analysis is done for investigating behavior of isolated reinforced concrete walls subject to combined in-plane and out-of-plane bending moments and axial force. A method for estimating the ultimate strength of wall is developed, based on the analytical results. For the nonlinear finite element analysis, a computer program addressing material and geometric nonlinearities is developed. An existing unified method combining plasticity theory and damage model is used for material model of reinforced concrete. By numerical studies, the internal force distribution in the cross section is idealized, and a new method for estimating the ultimate strength of wall is developed. According to the proposed method, variation of the interaction curve of in-plane bending moment and axial force depends on the range of the permissible axial force per unit length that is determined by the given amount of out-of-plane bending moment. As the out-of-plane bending moment increases, the interaction curve shrinks, which indicates a decrease in the ultimate strength. The proposed method is compared with an existing method using the general assumption that strain shall be directly proportional to the distance from the neutral axis. Compared with the proposed method, the existing method overestimates the ultimate strength for walls subject to low out-of-plane bending moments, and it underestimates the ultimate strength for walls subject to high out-of-plane bending moments.

Developement of GPS Data Quality Control Program (GPS 데이터 품질관리 프로그램의 개발)

  • Yun Hong-Sic;Lee Dong-Ha;Lee Young-Kyun;Cho Jae-Myung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.24 no.1
    • /
    • pp.9-18
    • /
    • 2006
  • This paper describes a new program called GPS_QC needed to check the quality of GPS observations before post-processing so that the surveyors can be improved the precision of GPS data analysis. The GPS_QC was designed to calculate the quality control (QC) parameters such as data gaps, cycle slips, low elevation angle, inonspheric delay, multi-path effects and DOP etc, within the period of GPS observation. It can be used to read and calculate the QC parameters from RINEX files. This program gives users brief statistics, time series plots and graphs of QC parameters. The GPS_QC can simply be performed the quality checking of GPS data that was difficult for surveyors in the field. It is expected that we can be improved the precision of positioning and solved the time consuming problem of GPS observation.

Time Domain Acoustic Propagation Analysis Using 2-D Pseudo-spectral Modeling for Ocean Environment (해양환경에서 2차원 유사 스펙트럴 모델링을 이용한 시간 영역 음 전달 해석)

  • Kim Keesan;Lee Keunhwa;Seong Woojae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.8
    • /
    • pp.576-582
    • /
    • 2004
  • A computer code that is based on the Pseudo-spectral finite difference algorithm using staggered grid is developed for the wave propagation modeling in the time domain. The advantage of a finite difference approximation is that any geometrically complicated media can be modeled. Staggered grids are advantageous as it provides much more accuracy than using a regular grid. Pseudo-spectral methods are those that evaluate spatial derivatives by multiplying a wavenumber by the Fourier transform of a pressure wave-field and performing the inverse Fourier transform. This method is very stable and reduces memory and the number of computations. The synthetic results by this algorithm agree with the analytic solution in the infinite and half space. The time domain modeling was implemented in various models. such as half-space. Pekeris waveguide, and range dependent environment. The snapshots showing the total wave-field reveals the Propagation characteristic or the acoustic waves through the complex ocean environment.

Mid-high frequency ocean surface-generated ambient noise model and its applications (중고주파 해수면 생성 배경소음 모델과 응용)

  • Lee, Keunhwa;Seong, Woojae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.5
    • /
    • pp.340-348
    • /
    • 2016
  • Ray-based model for the calculation of the ocean surface-generated ambient noise coherence function has the form of double integral with respect to a range and a bearing angle. While the theoretical consideration about its numerical implementations was partly given in the past work of authors, the numerical results on the ocean environment have not been presented yet. In this paper, we perform numerical experiments for shallow and deep water environments. It is shown that the coherence function depends on the ocean sediment sound speed, and is more sensitive to the ocean sediment sound speed in the shallow water than in the deep water. Similar trend is also observed for varying the orientation of hydrophone pair. In addition, a post-processing technique is proposed in order to plot the noise intensity for the noise receiving angle. This procedure will supplement the weakness of the ray-based model about the output data type compared to the semi-analytic model of Harrison.

A Microscopic Analysis on the Shapes of Fundamental Diagram Using Time Gap (차간시간(Time Gap) 변수를 이용한 교통기본도(Fundamental Diagram)의 미시적 해석)

  • Kim, Tae-Wan;Kim, Sang-Gu;Kim, Young-Ho;Son, Young-Tae
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.3 s.74
    • /
    • pp.95-105
    • /
    • 2004
  • The fundamental diagram is a important element in a variety of transportation studies. While various shapes of the fundamental diagram have been proposed and numerous debates on the best-fit fundamental diagram have been made, the reason why the fundamental diagram has many different shapes has not been well explained. This study introduces time sap as a key parameter to understand drivers' behavioral differences at different locations and traffic conditions, then relate to the shape of the fundamental diagram. From the freeway event detector data, it is shown that time gap follows a certain probabilistic distribution and its mean value varies along locations. It also turns out that drivers take different time gaps for different travel speeds. Three different types of time gap-speed diagrams are identified and matched to Greenberg, reversed-lambda, and inverted-V types of fundamental diagrams, respectively. This study explains the characteristics of fundamental diagrams using time gap as a microscopic variable and describes drivers' behavioral characteristics according to traffic and geometric conditions.

Integrated Guidance and Control Law with Impact Angle Constraint (입사각제어를 위한 통합유도조종법칙)

  • Yun, Joong-Sup;Park, Woo-Sung;Ryoo, Chang-Kyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.6
    • /
    • pp.505-516
    • /
    • 2011
  • The concept of the IGC(Integrated Guidance and Control) has been introduced to overcome the performance limit of the SGC(Separated Guidance and Control) loop. A new type of IGC with impact angle constraint has been proposed in this paper. Angle of attack, pitch angle rate, pitch angle and line of sight angle are considered as state variables. A controllability analysis and equilibrium point analysis have been carried out to investigate the control characteristic of the prposed IGC. The LQR(Linear Quadratic Regulator) has been adopted for the control law and detailed explanations about the adoption has been provided. The performance comparison between the IGC and the SGC has been carried out. The result of numerical simulations shows that the IGC guarantees better guidance performance than the SGC when the agile maneuver is needed for a specific guidance geometry.

Optimal design of a concave annular array transducer to generate high intensity focused ultrasound (고강도 집속 초음파 발생용 오목한 환상형 배열 트랜스듀서의 최적설계)

  • Choi, Euna;Roh, Yongrae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.6
    • /
    • pp.452-465
    • /
    • 2016
  • In this study, the structure of a concave annular array transducer was optimized to generate high intensity focused ultrasound for medical therapeutic application. The transducer has a phased array structure composed of several concentric channels that have 40 mm as the radius of curvature. We derived theoretical equations to analyze the sound field of the transducer and verified the validity of the equations by comparing the results calculated by the equations with those from finite element analyses. We also checked the possibility of dynamic focusing at around the geometric focal point. Further, the level of a grating lobe occurring at an unwanted position in the transducer sound field was confirmed to be reducible through the relation between the number of channels and the frequency of the transducer. Hence, the structure of the transducer was optimized to place the main lobe within a specific range from the zenith while systematically reducing the level of the maximum sidelobe including the grating lobe. The designed structure showed the performance better than that targeted at all the focal points.

Internal Flow Analysis of Seawater Cooling Pump using CFD (CFD를 이용한 해수냉각펌프의 내부유동 분석)

  • Bao, Ngoc Tran;Yang, Chang-jo;Kim, Bu-gi;Kim, Jun-ho
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.1
    • /
    • pp.104-111
    • /
    • 2017
  • This research focuses on simulation and visualization of flow field characteristics inside a centrifugal pump. The 3D numerical analysis was carried out by using a numerical CFD tool, addressing a Reynolds Average Navier-Stock code with a standard k-${\varepsilon}$ two-equation turbulence model. The simulation accounts for friction head loss due to rough walls at suction, impeller, discharge areas and volumetric head loss at impeller wear ring. A comparison of performance curves between simulation and experimentation is included, and it reveals a same trend of those results with a small difference of maximum 5 %. At best efficiency point, velocity vectors are smooth but it changes significantly under off-design point, a strong recirculation appears at the outlet of impeller passages near tongue area. A relatively uniform preassure distribution was observed around the impeller in despite of the tongue. Within the volute, because of its geometry, spiral vortexes formed, proving that the flow field in this region was relatively turbulent and unsteady.

Derivations of Buckling Knockdown Factors for Composite Cylinders Considering Various Shell Thickness Ratios and Slenderness Ratios (다양한 두께비와 세장비를 고려한 복합재 원통 구조의 좌굴 Knockdown factor의 도출)

  • Kim, Do-Young;Sim, Chang-Hoon;Kim, Han-Il;Park, Jae-Sang;Yoo, Joon-Tae;Yoon, Young-Ha;Lee, Keejoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.4
    • /
    • pp.321-328
    • /
    • 2021
  • This paper derives numerically new buckling Knockdown factors for the lightweight design of the composite propellant tanks for space launch vehicles. A nonlinear finite element analysis code, ABAQUS, is used for the present postbuckling analysis of composite cylinders under compressive loads. Various thickness ratios (R/t) and slenderness ratios (L/R) are considered and Single Perturbation Load Approach is applied to represent the geometric initial imperfection of the composite cylinder. For the composite cylinder with thickness ratio of 500 and slenderness ratio of 2.04, the buckling Knockdown factor derived in this work is higher by 84.38% than NASA's previous buckling design criteria. Therefore, it is investigated that a lightweight design is possible when the present Knockdown factors are used for the design of composite propellant tanks. In addition, it is shown that global buckling loads and buckling Knockdown factors decrease as the thickness ratio or slenderness ratio of composite cylinders increases.

Cortical bone strain during the placement of orthodontic microimplant studied by 3D finite element analysis (3차원 유한요소법을 이용한 교정용 마이크로임플란트 식립 시의 피질골 스트레인 해석)

  • Nam, Ok-Hyun;Yu, Won-Jae;Kyung, Hee-Moon
    • The korean journal of orthodontics
    • /
    • v.38 no.4
    • /
    • pp.228-239
    • /
    • 2008
  • Objective: The aim of this study was to evaluate the strain induced in the cortical bone surrounding an orthodontic microimplant during insertion. Methods: A 3D finite element method was used to model the insertion of a microimplant (AbsoAnchor SH1312-7, Dentos Co., Daegu, Korea) Into 1 mm thick cortical bone with a pre-drilled hole of 0.9 mm in diameter. A total of 1,800 analysis steps was used to simulate the 10 turns and 5 mm advancement of the microimplant. A series of remesh in the cortical bone was allowed to accommodate the change in the geometry accompanied by the implant insertion. Results: Bone strains of well higher than 4,000 microstrain, the reported upper limit for normal bone remodeling, was observed in the bone along the whole length of the microimplant. At the bone in the vicinity of the screw tip, strains of higher than 100% was recorded. The insertion torque was calculated at approximately 1.2 Ncm which was slightly lower than those measured from the animal experiment using rabbit tibias. Conclusions: The insertion process of a microimplant was successfully simulated using the 3D finite element method which showed that bone strains from a microimplant insertion might have a negative impact on physiological remodeling of bone.