A Microscopic Analysis on the Shapes of Fundamental Diagram Using Time Gap

차간시간(Time Gap) 변수를 이용한 교통기본도(Fundamental Diagram)의 미시적 해석

  • 김태완 (중앙대학교 도시공학과) ;
  • 김상구 (여수대학교 교통공학) ;
  • 김영호 (영산대학교 네트워크정보공학부) ;
  • 손영태 (명지대학교 교통공학과)
  • Published : 2004.06.30

Abstract

The fundamental diagram is a important element in a variety of transportation studies. While various shapes of the fundamental diagram have been proposed and numerous debates on the best-fit fundamental diagram have been made, the reason why the fundamental diagram has many different shapes has not been well explained. This study introduces time sap as a key parameter to understand drivers' behavioral differences at different locations and traffic conditions, then relate to the shape of the fundamental diagram. From the freeway event detector data, it is shown that time gap follows a certain probabilistic distribution and its mean value varies along locations. It also turns out that drivers take different time gaps for different travel speeds. Three different types of time gap-speed diagrams are identified and matched to Greenberg, reversed-lambda, and inverted-V types of fundamental diagrams, respectively. This study explains the characteristics of fundamental diagrams using time gap as a microscopic variable and describes drivers' behavioral characteristics according to traffic and geometric conditions.

교통기본도(Fundamental Diagram)는 교통류와 관련된 다양한 연구에서 중요한 요소로 생각되어져 왔다. 지금까지 다양한 형태의 교통기본도가 제시되었고 실제 데이터를 가장 잘 설명하는 교통기본도의 형태에 대해 많은 논의가 이루어졌지만, 서로 다른 형태의 교통기본도를 결정하는 원인에 대한 분석이 충분히 이루어지지 않고 있다. 본 연구는 서로 다른 지점과 교통조건에서 운전자의 행태차이를 이해하는데 중요한 파라메타로서 차간시간(time gap)을 소개하였고, 차간시간과 교통기본도의 형태와의 연관성을 분석하였다. 개별차량 검지기 자료를 토대로, 차간시간은 확률분포를 따르고 평균값은 지점에 따라 변화하는 것과 다른 통행속도에서 다른 차간시간을 보이는 것으로 분석되었다. 또한, 차간시간-속도 분포도의 3가지 형태들이 확인되었고 이것들은 교통류율-밀도 교통기본도로 전환되면 기존의 Greenberg, 역 ${\lambda}$, 전도된 V형태의 교통기본도와 일치하였다. 본 연구는 미시적 교통변수인 차간시간을 이용하여 교통기본도의 특징을 해석하였고, 운전자들의 행태에 관한 특성을 교통조건과 도로의 기하구조에 따라 설명하였다.

Keywords

References

  1. Greenshields, B. D. (1934) 'A Study of Traffic Capacity', Proc. Highway Research Board Vol.14, pp.448-477
  2. Greenberg, H. (1959) 'An Analysis of Traffic Flow', Operations Research, Vol.7, pp.79-85 https://doi.org/10.1287/opre.7.1.79
  3. Edie, L.C. and Foote, R. S. (1958) 'Traffic Flow in Tunnels' Highway Research Board Vol.37, pp.334-344
  4. Edie, L. C.(1961) 'Following and Steady-State Theory for Non-congested Traffic', Operations Research , Vol.9, pp.66-76 https://doi.org/10.1287/opre.9.1.66
  5. Drake, J. S., Schofer, J. L., and May, A. D. (1967) 'A Statistical Analysis of Speed Density Hypothesis' Highway Research Record 154, pp.53-87
  6. Mika, H.S., Kreer, J.B., and Yuan, L.S. (1969) 'Dual Mode Behavior of Freeway Traffic', Highway Research Record 279, HRB, pp.1-12
  7. Cedar, A. and May, A.D. (1976) 'Further Evaluation of Single- land Two-Regime Traffic Flow Models', Transportation Research Record 567, pp.1-15
  8. Hall, F. L., Allen, B.L., and Gunter, M.A (1986) 'Empirical Analysis of Freeway Flow-Density Relationships', Transportation Research A, Vol.20A, No.3. pp.197-210
  9. Banks, J.H.(1991) 'Two-Capacity Phenomenon at Freeway Bottleneck: A Basis for Ramp Metering?' Transportation Research Record 1320, pp.83-90
  10. Agyemang-Duah K. and Hall F.L.(1991) 'Some Issues Regarding the Numerical Value of Freeway Capacity', Highway Capacity and Level of Service, Proceedings of the International Symposium on Highway Capacity, Karlsruhe, 24-27 July, pp.1-16
  11. Zhang, H.M.(2001) 'A Note on Highway Capacity', Transportation Research Part B35, pp.929-937
  12. Zhang, H.M. and Kim, T.(2002) 'ACar--Following Theory for Multiphase Vehicular Traffic Flow', Transportation Research Part B
  13. Koshi, M., Iwasaki, M., Ohkura, I. (1983) 'Some Findings and an Overview on Vehicular Flow Characteristics', Proc. 8th Intl. Symp. on Transportation and Traffic Flow Theory, pp.403-426
  14. Banks, J.H.(1989) 'Freeway Speed-Flow-Concentration Relationships: More Evidence and Interpretations' Transportation Research Record 1225, pp.53-60
  15. Kerner, B.S (1998) 'Experimental Features of Self-Organization in Traffic Flow. Physical Review Letters VoI.81, No.17, pp.3797-3800 https://doi.org/10.1103/PhysRevLett.81.3797
  16. Banks, J. H.(2002) 'Review of Empirical Research on Congested Freeway Flow', TRR
  17. Atho, P.(1965) 'Interdependence of Certain Operational Characteristics within a Moving Traffic Stream', Highway Research Record 72, pp.58-57
  18. Hillegas. B.D., Houghton, D.G., and Athol, P.J.(1974) 'Investigation of Flow-Density Discontinuity and Dual-Mode Traffic Behavior', Trans. Research Record 495, pp.53-60
  19. Daganzo, C.F.(1999) 'A Behavioral Theory of Multi-Lane Traffic Flow Part I: Long Homogeneous Freeway Sections. UCB-ITS-RR-9-5, ITS UCB
  20. Newell G.F.(2002) 'A Simplified car-following theory: a lower order model', Trans. Research Part B 36, pp.195-205 https://doi.org/10.1016/S0191-2615(00)00044-8
  21. Forbes, T.W., Zagorski, H.J., Holshouser, E.L., and Deterline, W.A. (1958) 'Measurement of Driver Reaction to Tunnel Conditions', Highway Research Board Proc. 37, pp.345-357
  22. Forbes, T.W. (1963) 'Human Factor Consideration in Traffic Flow Theory', Highway Research Record 15, HRR, pp.60-66
  23. Banks, J.H. (2001) 'Characteristics of Average Time Gaps in Congested Freeway Flow', Presented at SIAM Annual Meeting, San Diego, CA. July 2001