• Title/Summary/Keyword: 해상풍

Search Result 126, Processing Time 0.021 seconds

Wind Loads of 5 MW Horizontal-Axis Wind Turbine Rotor in Parked Condition (운전정지 조건에서 5 MW 수평축 풍력터빈 로터의 풍하중 해석)

  • Ryu, Ki-Wahn;Seo, Yun-Ho
    • Journal of the wind engineering institute of Korea
    • /
    • v.22 no.4
    • /
    • pp.163-169
    • /
    • 2018
  • In this study, wind loads exerted on the offshore wind turbine rotor in parked condition were predicted with variations of wind speeds, yaw angles, azimuth angle, pitch angles, and power of the atmospheric boundary layer profile. The calculated wind loads using blade element theorem were compared with those of estimated aerodynamic loads for the simplified blade shape. Wind loads for an NREL's 5 MW scaled offshore wind turbine rotor were also compared with those of NREL's FAST results for more verification. All of the 6-component wind loads including forces and moments along the three axis were represented on a non-rotating coordinate system fixed at the apex of rotor hub. The calculated wind loads are applicable for the dynamic analysis of the wind turbine system, or obtaining the over-turning moment at the foundation of support structure for wind turbine system.

Analysis of Nonlinear Destructive Interaction between Wind and Wave Loads Acting on the Offshore Wind Energy Converter based on the Hydraulic Model Test (해상 풍력발전체에 작용하는 풍하중과 파랑하중간의 비선형 상쇄간섭 해석 -수리모형실험을 중심으로)

  • Cho, Yong Jun;Yang, Kee Sok
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.27 no.5
    • /
    • pp.281-294
    • /
    • 2015
  • In order to quantitatively estimate the nonlinear destructive interaction of wave load with wind load, which is very vital for the optimal design of offshore wind energy converter, we carried out a hydraulic model test and wind tunnel test. As a substructure of offshore wind energy converter, we would deploy the monopile, which is popular due to its easiness in construction. Based on the simulation using Monte Carlo simulation using Kaimal spectrum and cross spectrum, the instantaneous maximum wind velocity is adjusted to 10 m/s. And, considering the wave conditions of the Western Sea where a pilot wind farm is planned to be constructed, $H_s=0.1m$, 0.15 m, 0.2 m is carefully chosen. It turns out that the nonlinear destructive interaction between the wind and wave loads acting on the offshore wind energy converter is more clearly visible at rough seas rather than at mild seas, which strongly support our deduction that a Large eddy, a swirling vortex developed near the bumpy water surface in the opposite direction of the wind, is the driving mechanism underlying nonlinear destructive interaction between the wind and wave loads.

A Study of Natural Frequency on Offshore Wind Turbine Structural Change (해상 풍력 발전용 구조물 변화에 따른 고유진동해석)

  • Lee, Kang-Su;Lee, Jung-Tak;Son, Choong-Yul
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.1008-1016
    • /
    • 2007
  • The purpose of this paper is to investigate the Natural Frequency behavior characteristic of Wind Turbine Tower model, and calculated the stress values of thrust load, wave load, wind load, current load, and gravity load. The offshore Jacket Type Tower which was installed in Vitenam South China Sea is used for the study. Natural frequency and mode shape are calculated with commercial program using the measured vibration. The finite element analysis is performed with commercial F.E.M program(ANSYS) on the basis of the natural frequency and mode shape.

  • PDF

Study on the extraction of ocean parameters using SAR image data (SAR 영상자료률 이용한 해양 파라미터 추출 기법 연구)

  • Kang, Moon-Kyung;Park, Yong-Wook;Lee, Hoon-Yol;Lee, Moon-Jin
    • Proceedings of the KSRS Conference
    • /
    • 2007.03a
    • /
    • pp.198-203
    • /
    • 2007
  • 최근 인공위성 SAR를 이용한 기술은 해풍,파랑,해류 등과 같은 해양에서 발생되는 다양한 현상을 관측하고 연구하는데 펼수적인 기술로 대두되고 있다. CMOD4, CMOD-IFR2 모델은 해상풍의 크기를 구할 수 있으며,wave-SAR 변환 기법과 inter-look cross-spectra 기법은 파랑의 크기,방향과 같은 물리적 값을 추출할 수 있다. 또한 Doppler shift 기법을 적용하여 해류속도를 구할 수 있다. 본 연구에서는 위의 기법들을 종합적으로 적용하여 SOP (SAR Ocean Processor) 프로세서를 개발하였다. 이 프로세서를 한반도 연안 지역에 적용하여 RADARSAT-1 영상자료로부터 해풍,파랑,해류의 물리적 정보를 추출하였으며,이를 현장 관련 자료와 비교하여 신뢰할만한 결과를 얻을 수 있었다.

  • PDF

ERS SAR observations of the Korean coastal waters (ERS SAR자료를 이용한 한국 동해 연안수의 특성 조사)

  • Yoon, Hong-Joo;Cho, Han-Keun;Kang, Heung-Soon
    • Proceedings of the KSRS Conference
    • /
    • 2007.03a
    • /
    • pp.257-261
    • /
    • 2007
  • 한국 동해 연안의 위성 SAR 영상으로부터 몇가지 흥미로운 현상을 분석하였다. SAR 영상은 위치와 크기에 맞고 해상풍 상태가 $10-12ms^{-1}$ 이하로 원만할 때 와동류,전선,내부파 등의 다른 해양 현상들을 분석할 수 있다. 추후의 연구는 이를 정량적으로 분석하는 것이다. 실측 자료와 맞물리는 SAR 영상은 가시, 적외 복사계 혹은 고도계와 같은 다른 원격탐사 센서의 운용에 지장을 주는 구름이 연구해역에 나타날 때,혹은 육지 오염이 있을 때 등에도 해양, 기상학적 현상에 대한 새롭고 가치있는 정보를 제공할 수 있다.

  • PDF

Examinations on the Wave Hindcasting of the Abnormal Swells in the East Coast (동해안 이상 너울 추산에 관한 고찰)

  • Kim, Tae-Rim;Lee, Kang-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.6
    • /
    • pp.13-19
    • /
    • 2008
  • Abnormally large swells that appeared on the coast of the East Sea in October in 2005 and 2006 were simulated using SWAN model to examine the accuracy of the model for future forecasting Seawind data calculated based on the weather chart ant bottom topography were used for input data, and the model was operated more than 20 days before the observed swells to avoid the problems from the cold start of the model. The comparisons with observed wind and wave data were unsatisfactory and neededmore improvement in terms of swell component in the wave model as well as the quality of seawind data. The satellite wind and wave data can be good candidates for future comparison of the wave model results in the East Sea.

Marine Meteorological Characteristics in 2006-2007 : Sea Surface Wind (2006-2007년 해양기상 특성 : 해상풍)

  • You, Sung Hyup;Kwon, Ji Hye;Kim, Jeong-Sik
    • Atmosphere
    • /
    • v.19 no.2
    • /
    • pp.145-154
    • /
    • 2009
  • This study compared the sea surface wind pattern between model results from KMA operational model (RDAPS) and retrieved results from QuickSCAT in the 2006-2007 year. The mean spatial distributions of sea surface wind of RDAPS and QuikSCAT show the prominent seasonal patterns of summer and winter season adjacent to Korean Peninsular. The magnitude of sea surface wind predicted by RDAPS is weaker than that of QuikSCAT in most north Pacific ocean. In summer of 2006 positive bias with the maximum of 1 m/s is appeared in broad region of north Pacific ocean, however. the positive bias region is decreased to small region in 2007. Even though the predicted sea wind by RDAPS is stronger(weaker) than observed one by QuikSCAT in summer (winter), the RDAPS model simulate well the sea surface wind adjacent to Korean peninsular.

Reliability Analysis of Tripod Support Structure for Offshore Wind Turbine using Stress Concentration Factor (응력집중계수를 이용한 해상풍력터빈 트라이포드 지지구조물의 신뢰성해석)

  • Lee, Sang Geun;Kim, Dong Hyawn
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.28 no.2
    • /
    • pp.92-100
    • /
    • 2016
  • Reliability analysis of tripod support structure for offshore wind turbine was performed. Extreme distribution function of peak response due to wind and wave loads was estimated by applying peak over threshold(POT) method. Then, stress based limit state function was defined by using maximum stress of support structure which was obtained by multiplying beam stress and concentration factor. The reliability analysis result was compared when maximum stress was calculated from shell element. Reliability index was evaluated using first order reliability method(FORM).

Modelling of Drift Prediction in Search and Rescue (수색 및 구조작업에 있어서 표류지점 추정의 전산화)

  • 강신영
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.5 no.1
    • /
    • pp.11-18
    • /
    • 1993
  • A key element of a successful search and rescue is the correct prediction of the target location. In this paper, new computer models for drift prediction are suggested from the analysis of several methods currently used in other countries. Depending on the availability of the environmental data, users may select a model between the modified versions of U.S. Coast Guard CASP and FLENUMWEACEN SAR. Targets include boats, life rafts and person in water. Life rafts and boats are further classifed. New models are tested and compared with the limited number of field experimental results.

  • PDF

Accuracy Evaluation of Daily-gridded ASCAT Satellite Data Around the Korean Peninsula (한반도 주변 해역에서의 ASCAT 해상풍 격자 자료의 정확성 평가)

  • Park, Jinku;Kim, Dae-Won;Jo, Young-Heon;Kim, Deoksu
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.2_1
    • /
    • pp.213-225
    • /
    • 2018
  • In order to access the accuracy of the gridded daily Advanced Scatterometer (hereafter DASCAT) ocean surface wind data in the surrounding of Korea, the DASCAT was compared with the wind data from buoys. In addition, the reanalysis data for wind at 10 m provided by European Centre for Medium-Range Weather Forecasts (ECMWF, hereafter ECMWF), National Centers for Environmental Prediction and National Center for Atmospheric Research (NCEP/NCAR, hereafter NCEP), Modern Era Retrospective-analysis for Research and Applications-2 (MERRA-2, hereafter MERRA) were compared and analyzed. As a result, the RMSE of DASCAT for the actual wind speed is about 3 m/s. The zonal components of wind of buoys and the DASCAT have strong correlation more than 0.8 and the meridional components of wind them have lower correlation than that of zonal wind and are the lowest in the Yellow Sea (r=0.7). When the actual wind speed is below 10 m/s, the EMCWF has the highest accuracy, followed by DASCAT, MERRA, and NCEP. However, under the wind speed more than 10 m/s, DASCAT shows the highest accuracy. In the nature of error according to the wind direction, when the zonal wind is strong, all dataset has the error of more than $70^{\circ}$ on the average. On the other hand, the RMSE of wind direction was recorded $50^{\circ}$ under the strong meridional winds. ECMWF shows the highest accuracy in these results. The RMSE of the wind speed according to the wind direction varied depending on the actual wind direction. Especially, MERRA has the highest RMSE under the westerly and southerly wind condition, while the NCEP has the highest RMSE under the easterly and northerly wind condition.