• Title/Summary/Keyword: 항복선모델

Search Result 26, Processing Time 0.027 seconds

Estimation of the Local Load-Carrying Capacities of CFCT Column to H-Beam Connections by Yield Line Model -With regard to the Tensile side of Beam flange- (인장측 보플랜지의 항복선 모델을 이용한 CFCT기둥-H형강보 접합부의 국부내력평가)

  • Kang, Hyun Sik;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.3 s.36
    • /
    • pp.525-536
    • /
    • 1998
  • This paper is concerned with a theoretical study on the local load-carrying capacities of Concrete-Filled Circular Tubular(CFCT) column to H-beam connections by yield line theory. In this paper, the three cases which are assumed the yield line are involved. The first model is a simplified yield line model. The second model is modified by x and kx factors. The last one is a Morita's model. The local load-carrying capacities of CFCT column to H-beam connections has been studied both experimentally and theoretically using the yield line theory. The purpose of this paper is to suggest the basic data for developing the non-diaphragm connection.

  • PDF

Application limit of Yield Line Analysis on Welded T-joints in Cold-Formed SHS Sections (냉간성형 각형강관 T형 접합부의 항복선해석 전용한계)

  • Kang, Chang Hoon;Bae, Kyu Woong
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.3 s.70
    • /
    • pp.315-324
    • /
    • 2004
  • This study performs a yield line analysis of welded T-joints in cold-formed Square Hollow Sections (SHS) with the branch in axial compression. The existing yield line models proposed by Koto, Packer, Zhao, and CIDECT and the proposed yield line model of the previous study are compared, using the existing test results of welded T-joints in cold-formed SHS. The yield line model suggested in the previous paper, which is based on the simplified yield line analysis, is reviewed to evaluate its application limit on cold-formed SHS T-joints. In the proposed model, the round corner of the cold-formed SHS section and weld size are taken into account. Finally, the validity range of yield line analysis is determined by observing the actual failure modes and comparing the test value with the analysis value, set as ${\beta}^{\prime}{\leq}0.8$ where ${\beta}^{\prime}=0.8$, ${\beta}^{\prime}=b_1^{\prime}/b_0^{\prime}$, $b_1{^{\prime}}=b_1+t_0$ and $b_0{^{\prime}}=b_0-t_0$.

Ultimate Strength of branch-rotated T-joints in Cold-formed Square Hollow Sections - Chord flange failure mode - (지관이 회전된 냉간성형 각형강관 T형 접합부의 최대내력(I) - 주관 플랜지 파괴모드 -)

  • Bae, Kyu Woong;Park, Keum Sung;Kang, Chang Hoon;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.5 s.60
    • /
    • pp.657-664
    • /
    • 2002
  • This paper described the ultimate strength and deformation limit of the new uniplanar T-joints in cold-formed square hollow sections. In the configuration of the new T-joint, only a branch member is orientated to a chord member at 45 degrees in the plane of the truss. This study focused on the branch-rotated T-joints that were governed by chord flange failure in previous studies. Test results of the T-joint in cold-formed square hollow sections revealed a deformation limit of 3%B for $16.7{\leq}2{\gamma}(=B/T){\leq}33.3$ and $0.27{\leq}{\beta}(=b1/B){\leq}0.6$. The existing strength formulae for traditional T-joint were determined and a new yield-line model for the branch-rotated T-joint proposed. Finally, the strength formula on the yield-line analysis was compared with test results and the application range of the proposed formula recommended.

Theoretical Assessment of Limit Strengthening Ratio of Bridge Deck Based on the Failure Characteristic (교량 바닥판의 파괴형태를 고려한 임계보강재비의 이론적 산정)

  • 심종성;오홍섭;유재명
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.1
    • /
    • pp.110-117
    • /
    • 2002
  • In a strengthened bridge deck which received increased service loads, failure patterns of bridge deck vary depending on deck thickness, compressive strength of concrete, yielding strength of reinforcement, reinforcement ratio and additional strengthening ratio. General failure pattern that is most commonly reported as punching shear failure after the main rebar yields, followed by yielding of distributing rebar. In this paper, by Proposing a limit to the amount of strengthening material, a brittle failure can be prevented and a ductile failure mode similar to that developed in unstrengthened deck is derived. In order to calculated the limit strengthening ratio, the yield line theory and previously proposed plastic punching shear model have been used

Evaluation of Rotation Capacity of Steel Moment Connections ConsideringInelastic Local Buckling - Model Development (비탄성 국부좌굴을 고려한 철골 모멘트 접합부 회전능력 평가를 위한 모델 개발)

  • Lee, Kyung Koo
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.5
    • /
    • pp.617-624
    • /
    • 2008
  • Well-designed steel moment connections will undergo local buckling before they exhaust their available rotation capacity, and inelastic post-buckling deformation plays a major role in defining the connection rotation capacity. An approximate analytical method to model strength degradation and failure of beam plastic hinges due to local buckling and estimation of the seismic rotation capacity of fully restrained beam-column connections in special steel moment-resisting frames under both monotonic and cyclic loading conditions is proposed in this study. This method is based on the plastic mechanism and a yield line plastic hinge (YLPH) model whose geometry is determined using the shapes of the buckled plastic hinges observed in experiments. The proposed YLPH model was developed for the improved WUF-W and RBS connections and validated in comparison with experimental data. The effects of the beam section geometric parameters on the rotation capacity were discussed in the companion paper (parametric studies).

The Parameters of the Bounding Surface Plasticity Model in the Isotropically Consolidated Clay (등방압밀점토에서 항복경계면 소성모델의 매개변수)

  • 이영생;김원영
    • Geotechnical Engineering
    • /
    • v.12 no.4
    • /
    • pp.21-32
    • /
    • 1996
  • To predict the stress-strain behavior of the soil more approximately, the concept of the critical state soil mechanics was added to the plasticity increment theory in the bounding surface Plasticity model. This model was constituted with two ellipse and one hyperbola in older to describe the behaviour of the isotropically consolidated soil. Thus, this model is very complicate due to the various parameters used. Therefore, the accurate understanding and skill of the theory is required in order to apply this model to the practical geotechnical problems. In the present paper, the bounding surface shape paraiheter R and A, the mapping center parameter C among various parameters used were varied and the results were numerically analized. Finally, each sensitivity with respect to monotonic and cyclic loading was analized and the range of the value of the each parameter was proposed.

  • PDF

Evaluation of Design Formulae for T-joints on the Branch Plate and Hollow Steel Sections welded connections (지관 플레이트가 주관에 용접된 각형강관 접합부의 설계내력 평가에 관한 연구)

  • Park, Keum Sung;Bae, Kyu Woong;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.5 s.78
    • /
    • pp.581-591
    • /
    • 2005
  • This paper proposes a design formulae that evaluates the design strength of T-joints made of cold-formed square hollow steel sections with longitudinal branch plate. The T-joints had a configuration that a branch member used to longitudinal plate to the main chord in the plane. This study focused on the branch plate T-joints governed by the main chord flange failure mode among the experimental results. Based on the test results of the longitudinal branch plate T-joint in the square hollow sections, the ultimate strength on the T-joints was defined as 1.5 times the load at 1% B the strength of joints that governed the serviceability in control for $16.7{\leq}2\gamma(B/T){\leq}31.3$ and $0.20{\leq}{\beta}(b1/B){\leq}0.75$. Existing yield line models for normal T-joints were investigated to be the main chord flange failure for the branch plate T-joint, and this proposal design formula was based on the theory of the yield line model. Finally, the value of the finite element method compared with the value of the test and theory for the T-joints verified the validity of the design formulae.

J2-bounding Surface Plasticity Model with Zero Elastic Region (탄성영역이 없는 J2-경계면 소성모델)

  • Shin, Hosung;Oh, Seboong;Kim, Jae-min
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.4
    • /
    • pp.469-476
    • /
    • 2023
  • Soil plasticity models for cyclic and dynamic loads are essential in non-linear numerical analysis of geotechnical structures. While a single yield surface model shows a linear behavior for cyclic loads, J2-bounding surface plasticity model with zero elastic region can effectively simulate a nonlinearity of the ground response with the same material properties. The radius of the yield surface inside the boundary surface converged to 0 to make the elastic region disappear, and plastic hardening modulus and dilatancy define plastic strain increment. This paper presents the stress-strain incremental equation of the developed model, and derives plastic hardening modulus for the hyperbolic model. The comparative analyses of the triaxial compression test and the shallow foundation under the cyclic load can show stable numerical convergence, consistency with the theoretical solution, and hysteresis behavior. In addition, plastic hardening modulus for the modified hyperbolic function is presented, and a methodology to estimate model variables conforming 1D equivalent linear model is proposed for numerical modeling of the multi-dimensional behavior of the ground.

Evaluation of press formability of pure titanium sheet (순 티탄늄 판재의 프레스 성형성 평가(제 1보))

  • Kim, Young-Suk;In, Jeong-Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.3
    • /
    • pp.380-388
    • /
    • 2016
  • Commercially pure titanium (CP Ti) has been actively used in plate heat exchangers due to its light weight, high specific strength, and excellent corrosion resistance. However, compared with automotive steels and aluminum alloys, there has not been much research on the plastic deformation characteristics and press formability of CP Ti sheet. In this study, the mechanical properties of CP Ti sheet are clarified in relation to press formability, including anisotropic properties and the stress-strain relation. The flow curve of the true stress-true strain relation is fitted well by the Kim-Tuan hardening equation rather than the Voce and Swift models. The forming limit curve (FLC) of CP Ti sheet was experimentally evaluated as a criterion for press formability by punch stretching tests. Analytical predictions were also made via Hora's modified maximum force criterion. The predicted FLC with the Kim-Tuan hardening model and an appropriate yield function shows good correlation with the experimental results of the punch stretching test.