• Title/Summary/Keyword: 항복곡면

Search Result 15, Processing Time 0.023 seconds

Continuum constitutive equation of Shape Memory Alloy based on plasticity model (소성모델에 기초한 형상기억합금의 연속체 구성방정식)

  • Ryu, Jung-Hyun;Kim, Sang-Huan;Cho, Mang-Hyo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2009.04a
    • /
    • pp.30-33
    • /
    • 2009
  • 본 논문에서는 형상기억합금의 특징적인 거동을 모사하기위한 구성방정식을 제안한다. 제안되는 구성방정식은 기존의 소성모델을 기초로 하는 현상학적인 모델로, 소성 경화이론에서 사용되는 항복곡면에 대응되는 상변이 곡면을 정의하여 형상기억합금의 비선형 거동을 모사한다. 단, 상변이 곡면이 1개만 존재하는 소성모델과는 다르게, 오스테나이트에서 마르텐사이트로의 정방향 상변이와 마르텐사이트에서 오스테나이트로의 역방향 상변이를 각각 해석하기위해 독립적인 2개의 상변이 곡면을 정의해주게 된다. 기계적 하중만이 아닌 열적 하중의 변화에도 비선형 거동을 보이는 형상기억합금의 특성을 반영하기위해 상변이 곡면은 응력과 온도의 함수로 정의되며, 이렇게 정의된 상변이 곡면을 바탕으로 리턴 매핑 알고리즘을 적용하여 열적하중과 기계적하중의 변화에 따른 형상기억합금의 거동을 모사하는 구성방정식을 제안하였다.

  • PDF

A Study on Eulerian Analysis for the Steady State Rolling (정상상태 압연공정의 오일러리안 해석에 관한 연구)

  • 이용신
    • Transactions of Materials Processing
    • /
    • v.13 no.7
    • /
    • pp.570-579
    • /
    • 2004
  • 정상상태 압연공정의 오일러리안 공정해석 모델에 관한 연구들을 종합 정리하였다 본 연구의 유한요소해석 모델은 집합조직의 발전에 따른 이방성과 미세기공의 성장에 따른 기계적 성질의 열성화를 평형방정식에 직접 결합하였다 따라서 집합조직의 발전 및 기공률의 변화를 예측하고 동시에 이방성과 기계적성질의 열성화를 해석에 반영할 수 있다. 더불어 오일러리안 해석에서 형상예측을 위하여 자유곡면 수정법과 유선추적법을 유한요소해석 모델에 결합하였다 본 연구의 공정해석 모델을 평판 압연, 클래드압연, 삼차원 사각단면봉의 압연 및 형상압연에 적용하여 집합 조기의 발전, R-값, 항복곡면, 결함성장 등의 기계적성질의 변화 예측과 클래드 압연시에 이중재 접촉면 형상, 배불림, 형상압연 시의 단면변화 등의 형상변화 예측을 보여주었다.

Evaluation of press formability of pure titanium sheet (순 티탄늄 판재의 프레스 성형성 평가(제 1보))

  • Kim, Young-Suk;In, Jeong-Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.3
    • /
    • pp.380-388
    • /
    • 2016
  • Commercially pure titanium (CP Ti) has been actively used in plate heat exchangers due to its light weight, high specific strength, and excellent corrosion resistance. However, compared with automotive steels and aluminum alloys, there has not been much research on the plastic deformation characteristics and press formability of CP Ti sheet. In this study, the mechanical properties of CP Ti sheet are clarified in relation to press formability, including anisotropic properties and the stress-strain relation. The flow curve of the true stress-true strain relation is fitted well by the Kim-Tuan hardening equation rather than the Voce and Swift models. The forming limit curve (FLC) of CP Ti sheet was experimentally evaluated as a criterion for press formability by punch stretching tests. Analytical predictions were also made via Hora's modified maximum force criterion. The predicted FLC with the Kim-Tuan hardening model and an appropriate yield function shows good correlation with the experimental results of the punch stretching test.

New Methods of Finite Element Postprocessing for Elasto-Plastic Behavior (탄소성 거동의 유한요소해석 후처리 방법)

  • Lee, Jae-Young
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.5
    • /
    • pp.487-499
    • /
    • 2009
  • The postprocessing technology has been advanced diversely to accommodate the tendency of increasingly refined and complicated practices of finite element modeling in pace with enhanced capabilities of computers and improved algorithm of equation solvers. As a result of such progresses in both hardware and software, it became practically meaningful to inspect and analyze the elasto-plastic behavior using the intermediate results from the increasing number of incremental and iterative processes. This paper is concerned about the new methods of postprocessing with computer graphic visualization of elasto-plastic behavior on the basis of the theoretically reorganized analysis results. This paper proposes a new method of rendering the plastic zone, and new approaches of analyzing and interpreting the elasto-plastic behavior using the graphical information visualized in the form of the yield surface and the stress path, or in the form of the Mohr circles and the failure envelope.

Evolution of Orthotropic Anisotropy by Simple Shear Deformation (전단변형에 의한 직교이방성의 변화)

  • 김권희
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.2
    • /
    • pp.413-423
    • /
    • 1991
  • Multiaxial loading by combinations of tension-torsion-internal pressure have been applied to the thins-walled tubular specimens prepared from cold drawn tubes of SAE 1020 steel. Prior to the multiaxial loading, each specimen has been twisted to different shear strains. Uniaxial tensile yield stresses measured at different angles to the tube axis clearly show that the initial orthotropic symmetry is maintained during twisting. The orthotropy axes are observed to rotate with shear strains. The plane stress yield locus measured for each twisted specimens show that yield surface shape does not remain similar during twisting and thus anisotropic work hardening is not a function of only plastic work.

Yield Surface and Hardening Laws of Unsaturated Clayey Soils for Isotropic Compression (불포화 점성토의 등방압축 상태에서 발생하는 항복곡면과 경화감수)

  • 송창섭
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.39 no.1
    • /
    • pp.93-101
    • /
    • 1997
  • This paper presents yield surfaces and hardening laws for describing the state of an unsaturated soil under isotropic compression and suction changes. The yield surface is formulated within the framework of hardening plasticity using two independent sets of stress variables : the excess of total stress over air pressure and the suction. And the application of the yield surfaces and hardening laws are confirmed from the result of the experiment. To this end a series of suction-controlled isotropic tests are conducted on clayey soils. Matric suction is controlled by the axis translation technique using high air entry ceramic disk. The specimens are compacted using a half of Proctor compaction energy with 5 % lower of water content than the optimum moisture contents. From test results, existence of the yield surfaces and an application of hardening laws to samples are confirmed by comparison between test and predicted results. And it is confirmed that LC yield locus is extened with the total plastic deformations induced by suction or stress changes, however, SI yield locus is only extended with the plastic deformations by induced suction changes.

  • PDF

Construction of Modified Yield Loci with Respect to the Strain Rates using Hill48 Quadratic Yield Function (Hill48 이차 항복식을 이용한 변형률 속도에 따른 수정된 항복곡면의 구성)

  • Lee, Chang-Soo;Bae, Gi-Hyun;Kim, Seok-Bong;Huh, Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.2
    • /
    • pp.56-60
    • /
    • 2010
  • Since the forming process involves the strain rate effect, a yield function considering the strain rate is indispensible to predict the accurate final blank shape in the forming simulation. One of the most widely used in the forming analysis is the Hill48 quadratic yield function due to its simplicity and low computing cost. In this paper, static and dynamic uni-axial tensile tests according to the loading direction have been carried out in order to measure the yield stress and the r-value. Based on the measured results, the Hill48 yield loci have been constructed, and their performance to describe the plastic anisotropy has been quantitatively evaluated. The Hill48 quadratic yield function has been modified using convex combination in order to achieve accurate approximation of anisotropy at the rolling and transverse direction.

Analysis of Macroscopic Forming Process on the Basis of Microscopic Crystal Plasticity (미시적 결정소성학에 의거한 거시적 성형공정 해석)

  • 여은구;이용신
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.5
    • /
    • pp.167-175
    • /
    • 1998
  • A mathematical formulation is presented to model anisotropy from the deformation textures developed in a forming process. In this work, a micro-mechanical-based polycrystalline analysis is implemented into a consistent finite element method for the anisotropic, viscoplastic deformation of polycrystalline metals. As suggested by Taylor, the deformation of each grain in an aggregate is assumed to be same as the macroscopic deformation of an aggregate or a macro-continuum point. Algorithms are developed to represent the plastic anisotropy, such as the anisotropic yield surface and R-value, from the predicted deformation texture. As applications, the evolution of texture in rolling, upsetting and drawing/extrusion processes are simulated and the corresponding changes of mechanical properties such as yield surface and R-value are predicted.

  • PDF

Study on the Yield Locus of Aluminum Alloy Sheet Using Biaxial Cruciform Specimens (2축 십자형 시편을 이용한 알루미늄 합금 판재의 항복곡면에 대한 연구)

  • Shin, H.D.;Park, J.G.;Park, C.D.;Kim, Y.S.
    • Transactions of Materials Processing
    • /
    • v.18 no.5
    • /
    • pp.416-421
    • /
    • 2009
  • The applications of the aluminum alloy sheets to the auto-body panels are dramatically increasing for weight reduction of the automobiles. However, low formability of the aluminum alloy sheet compared to the steel sheet can be obstacles in tool manufacturing processes. Therefore, many of yield criteria for the anisotropic materials such as the aluminum alloy sheet have been observed. In this study, the biaxial tensile test and FLD test for the aluminum alloy sheet are performed. The results are compared with Hill's 1948 and Hill's 1990 models by means of theoretical predictions. Finite element analysis was also performed using the proposed method for the real panel.