• Title/Summary/Keyword: 항복값

Search Result 300, Processing Time 0.021 seconds

Bi-Axial Stress Field Analysis on Shear-Friction in RC Members (2축-응력장 이론을 이용한 철근콘크리트 부재의 전단마찰 해석)

  • Kim, Min-Joong;Lee, Gi-Yeol;Lee, Jun-Seok;Kim, Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.1
    • /
    • pp.25-35
    • /
    • 2012
  • For a member subjected to direct shear forces, forces are transferred across interface concrete area and resisted by shear transfer capacity. Shear-friction equations in recent concrete structural design provisions are derived from experimental test results where shear-friction capacity is defined as a function of steel reinforcement area contained in the interface. This empirical equation gave too conservative values for concrete members with large amounts of reinforcement. This paper presents a method to evaluate shear transfer strengths and to define ultimate conditions which result in crushing of concrete struts after yielding of longitudinal reinforcement perpendicular to the interface concrete. This method is based on the bi-axial stress field theory where different constitutive laws are applied in various means to gain accurate shear strengths by considering softening effects of concrete struts based on the modified compression-field theory and the softened truss model. The validity of the proposed method is examined by applying to some selected test specimens in literatures and results are compared with recent design code provisions. A general agreement is observed between predicted and measured values at ultimate loading stages in initially uncracked normal-strength concrete test.

Microparticulation/Air Classification of Rice Bran: Characteristics and Application (초미세분쇄/공기분급을 이용한 탈지미강 분획의 특성과 응용)

  • Park, Dong-June;Ku, Kyung-Hyung;Mok, Chul-Kyoon
    • Korean Journal of Food Science and Technology
    • /
    • v.25 no.6
    • /
    • pp.769-774
    • /
    • 1993
  • Defatted rice bran was microparticulated using fluidized bed opposed jet mill and air-classified at different air classifying wheel speed (ACWS) in Turboplex classifier. The median particle size and the standard deviation decreased, and concomitantly the specific surface area increased generally with increasing ACWS. The protein, fat and ash contents of the recovered rice bran increased with ACWS. The contents of minerals; magnesium, zinc, iron and manganese; increased positively with ACWS. The phytic acid content, however, was slightly higher at middle ACWS. The dietary fiber content was highest in the ACWS 15,000 rpm fraction showing 31.47%. Higher ACWS resulted in lighter colored powder. The water holding capacity (WHC) showed the maximum value at ACWS 12,000 rpm and decreased with increasing ACWS, while the oil holding capacity (OHC) increased with ACWS. The rheological property of the microparticulated rice bran/water suspension fitted to the linear model. The yield stress and viscosity of the suspension increased with ACWS. The shape of microparticulated rice bran at ACWS 21,000 rpm was spherical, and the median particle size was $3.7{\mu}m$. When cake was prepared with substitution of microparticulated rice bran at 5%, the cake height and volume increased remarkably.

  • PDF

Influence of Glass Fiber Orientation on the Bi-directional GFRP Characteristics (직교이방향 GFRP 재료 특성에 미치는 유리 섬유방향의 영향)

  • Suh, Jung-Joo;Moon, Duk-Hong
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.21 no.1
    • /
    • pp.75-81
    • /
    • 1985
  • The tensile and dielctric strength of the epoxied resin with bi-directional woven glass fibers with a laminate of two layers(G-10) are studied, and the test parameter is the angle between fiber orientation and the tensile axis. The obtained results may be summaried as follows: 1) when the angle between fiber orientation and tensile axis was varied from 0$^{\circ}$ to 45$^{\circ}$ the yield and fracture stresses have a tendency to decrease with increase in the angle. Especially, the decrease rates in the yield and fracture stresses are changed remarkably in the range of 0$^{\circ}$ to 15$^{\circ}$. 2) The fracture strain has showed the maximum value when the angle between fiber orientation and tensile axis is 45$^{\circ}$, and showed the rapid rate of change from 15$^{\circ}$ to 45$^{\circ}$. 3) For the sample with same angle between fiber orientation and tensile axis the maximum dielectric strength under compressive stress is decreased with increase in tensile stress, when the compressive stress is increased as a parameter of tensile stress. 4) When the angle between fiber orientation and tensile axis is 45$^{\circ}$, the dielectric strength showed the worst value, as the mechanical strength did.

  • PDF

Rheological Properties of Chestnut Starch Solution (밤전분 수용액의 리올로지 특성)

  • Park, Hong-Hyun;Kim, Sung-Kon;Pyun, Yu-Ryang;Lee, Shin-Young
    • Korean Journal of Food Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.815-819
    • /
    • 1989
  • Rheological properties of chestnut starch suspensions (3 and 4%, db) and gelatinized starch (4%, db) were investigated with a capillary and rotational viscometer, respectively. Starch suspensions had no yield stress and showed dilatant flow behavior in the temperature ranges of $30-65^{\circ}C$. However, starch suspension showed pseudoplastic flow behavior at $70^{\circ}C\; and\;above\; 65^{\circ}C$ for 3 and 4% concentration, respectively Flow activation energy below $50^{\circ}C$ was 0.56 kcal/mole but increased to 51.9-80.8 kcal/mole at $60-70^{\circ}C$. The behavior of gelatinized starch (4%) was pseudoplastic regardless of heating temperature $(65-80^{\circ}C)$ and time (15-60 min). The apparent viscosity of the starch remained constant after heating at $80^{\circ}C$ for 45 min. The swelling power and log apparent viscosity showed similar pattern. The activation energy of the apparent viscosity of the geletinized starch at $70-80^{\circ}C$ was 13.09kcal/mole. The apparent viscosity of thermal-gelatinized $(90^{\circ}C)$ starch was lower than that of 15 psi-gelatinized starch.

  • PDF

Evaluation for Deformability of RC Members Failing in Bond after Flexural Yielding (휨항복 후 부착파괴하는 철근콘크리트 부재의 부착 연성 평가)

  • Choi, Han-Byeol;Lee, Jung-Yoon
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.3
    • /
    • pp.259-266
    • /
    • 2012
  • A general earthquake resistant design philosophy of ductile frame buildings allows beams to form plastic hinges adjacent to beam-column connections. In order to carry out this design philosophy, the ultimate bond or shear strength of the beam should be greater than the flexural yielding force and should not degrade before reaching its required ductility. The behavior of RC members dominated by bond or shear action reveals a dramatic reduction of energy dissipation in the hysteretic response due to the severe pinching effects. In this study, a method was proposed to predict the deformability of reinforced concrete members with short-span-to-depth-ratios, which would result in bond failure after flexural yielding. Repeated or cyclic loading produces a progressive deterioration of bond that may lead to failure at lower cyclic bond stress levels. Accumulation of bond damage is caused by the propagation of micro-cracks and progressive crushing of concrete in front of the lugs. The proposed method takes into account bond deterioration due to the degradation of concrete in the post yield range. In order to verify bond deformability of the proposed method, the predicted results were compared with the experimental results of RC members reported in the technical literature. Comparisons between the observed and calculated bond deformability of the tested RC members showed reasonably good agreement.

Evaluation and Modification of Tensile Properties of Carbon Fiber Reinforced Polymer(CFRP) as Brittle Material with Probability Distribution (확률분포를 이용한 취성재료 특성의 탄소섬유보강폴리머 인장물성평가 및 보정)

  • Kim, Yun-Gon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.3
    • /
    • pp.17-24
    • /
    • 2019
  • Carbon Fiber Reinforced Polymers(CFRP) has widely utilized as a material for rehabilitation because of its light-weight, deformability and workability. Because CFRP is brittle material whereas steel is ductile, it is inappropriate to apply conventional design approach for steel reinforcement. For ductile material, the behavior of combined elements is on average of that of unit element due to the stress redistribution between elements after yielding. Therefore, the mean value of the stress of combined elements is equal to that of unit element and the standard variation is smaller. Therefore, although the design value can increase, it is used as constant value because it is conservative and practical approach. However, for brittle material, the behavior of combined elements is governed by the weaker element because no stress redistribution is expected. Therefore, both the mean value and standard variation of the stress of combined elements decreases. For this reason, the design value would decrease as the number of element increases although it is eventually converged. In this paper, in brittle material, it is verified that the combination of unit element with normal distribution results in combined element with weibull distribution, so the modifying equation of mechanical properties is proposed with respect to the area load applied.

Calculation of Horizontal Shear Strength in Reinforced Concrete Composite Beams (철근콘크리트 합성보의 수평전단강도 산정)

  • Kim, Min-Joong;Lee, Gi-Yeol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.12
    • /
    • pp.772-781
    • /
    • 2020
  • A direct shear member resists external forces through the shear transfer of reinforcing bars placed at the concrete interface. The current concrete structural design code uses empirical formulas based on the shear friction analogy, which is applied to the horizontal shear of concrete composite beams. However, in the case of a member with a large amount of reinforcing bars, the shear strength obtained through the empirical formula is lower than the measured value. In this paper, the limit state of newly constructed composite beams on an existing concrete girder is defined using stress field theory, and material constitutive laws are applied to gain horizontal shear strength while considering the tension-stiffening and softening effects of concrete struts. A simplified method of calculating the shear strength is proposed, which was validated by comparing it with the related design code provisions. As a result, it was confirmed that the method generally shows a similar tendency to the experimental results when the shear reinforcing bar yields, unlike the regulations of the design code, where differences in the predicted value of shear strength occur according to the shear reinforcement ratio.

Analysis on the Displacement Constraints of Frames for Plastic Film Greenhouse (플라스틱 필름 온실용 구조재의 변위제한 검토)

  • Yun, Sung-Wook;Choi, Man-Kwon;Lee, Siyoung;Kang, Donghyeon;Kim, Hyeon-Tae;Yoon, Yong-Cheol
    • Journal of agriculture & life science
    • /
    • v.50 no.1
    • /
    • pp.273-281
    • /
    • 2016
  • In this study, after carrying out a bending test that targeted the frames of plastic film greenhouse, the load-displacement relationship was analyzed to be used as basic data to develop greenhouse construction and maintenance guidelines. As a result, regardless of the shapes of the specimen, the yield and the maximum load increased as the size of the specimen increased. The displacement also showed the same pattern. A steel pipe showed lower yield and maximum load than a square pipe, and the displacement was large. In the steel pipe case, the displacement under the yield and maximum load was in the range of approximately 1.42-4.20mm and 5.80-24.13mm, respectively. In the square pipe case, the displacement under the yield and maximum load was in the range of approximately 1.62-3.00mm and 3.13-8.01mm, respectively. Further, a large difference was observed between the result of this test and the values calculated by a conventionally provided standard. In particular, not much difference was found from the result of this test in the case of a purlin member from the values provided by previous researches. However, a large difference was observed in the column or main rafter members. Furthermore, when a wide-span and venlo type, which is a glasshouse, was used as a target(h/100 and h/80), the displacement under the yield and maximum load was approximately 28.0mm and 35.0mm, respectively, which showed a large difference compared with the Netherlands standard(14.0mm) of a glasshouse. Further, in the main rafter case, a large difference was observed in the displacement limit according to the width(i.e., span) of the greenhouse where members are used. Therefore, because the displacement limit can vary depending on various factors such as type, form, and size of a greenhouse, we determined that studies or tests that consider these factors should be carried out to reflect them in the construction and maintenance of greenhouses.

Analysis of the Effect of the Etching Process and Ion Injection Process in the Unit Process for the Development of High Voltage Power Semiconductor Devices (고전압 전력반도체 소자 개발을 위한 단위공정에서 식각공정과 이온주입공정의 영향 분석)

  • Gyu Cheol Choi;KyungBeom Kim;Bonghwan Kim;Jong Min Kim;SangMok Chang
    • Clean Technology
    • /
    • v.29 no.4
    • /
    • pp.255-261
    • /
    • 2023
  • Power semiconductors are semiconductors used for power conversion, transformation, distribution, and control. Recently, the global demand for high-voltage power semiconductors is increasing across various industrial fields, and optimization research on high-voltage IGBT components is urgently needed in these industries. For high-voltage IGBT development, setting the resistance value of the wafer and optimizing key unit processes are major variables in the electrical characteristics of the finished chip. Furthermore, the securing process and optimization of the technology to support high breakdown voltage is also important. Etching is a process of transferring the pattern of the mask circuit in the photolithography process to the wafer and removing unnecessary parts at the bottom of the photoresist film. Ion implantation is a process of injecting impurities along with thermal diffusion technology into the wafer substrate during the semiconductor manufacturing process. This process helps achieve a certain conductivity. In this study, dry etching and wet etching were controlled during field ring etching, which is an important process for forming a ring structure that supports the 3.3 kV breakdown voltage of IGBT, in order to analyze four conditions and form a stable body junction depth to secure the breakdown voltage. The field ring ion implantation process was optimized based on the TEG design by dividing it into four conditions. The wet etching 1-step method was advantageous in terms of process and work efficiency, and the ring pattern ion implantation conditions showed a doping concentration of 9.0E13 and an energy of 120 keV. The p-ion implantation conditions were optimized at a doping concentration of 6.5E13 and an energy of 80 keV, and the p+ ion implantation conditions were optimized at a doping concentration of 3.0E15 and an energy of 160 keV.

Inelastic Buckling Behavior of Column and Beam-Column (기둥과 보-기둥 구조물의 비탄성 좌굴거동)

  • Lee, Dong Sik;Oh, Soon Taek
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.2 s.69
    • /
    • pp.215-224
    • /
    • 2004
  • The inelastic lateral-torsional buckling behavior of the beam-columns and the columns was investigated in this paper. The energy method was deployed to study the inelastic buckling behavior of the beam-columns and columns. which requires the iterative solution of a fourth-order eigenproblem. Hitherto, the patterns of residual stress that satisfies the I-section manufacturing in Korea is not available, therefore the pattern of residual stress used in this study is a 'well-known' simplified pattern. The simplified pattern of the residual stresses is incorporated with the flow theory of plasticity to model the inelastic response. Firstly, this study investigates the inelastic lateral-torsional buckling behavior of the I-section beam-columns under a concentric axial compressive force and uniform bending, and the effect of residual stress on the inelastic buckling behavior of beam-columns is studied. The study is then extended to the inelastic buckling of the columns by eliminating a bending moment. These results are compared it with the design method in the Korean Steel Designers Manual (KSDM 1995). This study has found that design method in KSDM (1995) is excessively conservative.