• Title/Summary/Keyword: 항만 컨테이너 시뮬레이션

Search Result 143, Processing Time 0.023 seconds

A Design Method of Yard Layout in Port Container Terminal (컨테이너터미널의 장치장 레이아웃 설계방법)

  • Choi Yong-Seok;Ha Tae-Young
    • Journal of Navigation and Port Research
    • /
    • v.29 no.8 s.104
    • /
    • pp.741-746
    • /
    • 2005
  • This paper proposes a method for designing layout on the yard and evaluating alternative designs of the layout by applying simulation The design method is based on the concepts of the conventional port container terminal with yard layout. In general, yard design of the container terminal consists of the two major parts. One is to divide yard area between the number of sections and runs and the other is to decide the number of equipment including yard truck and yard crane. In the past days, this design was depended on the experience of the terminal operator and the reproduction of the conventional terminal layout because it is a very complex problem to be considering facilities and equipments. In this paper, we suggest a design method as a conceptual procedure used simulation method The number of sections and runs on yard area, the number of yard truck per container crane, and the number of yard crane per run are decided using simulation In addition, the traffic flow among blocks on yard layout is estimated in terms of rate.

A Study on the Optimal Service Level of Exclusive Container Terminals (컨테이너 전용부두의 최적 서비스 수준에 관한 연구)

  • Park, Sang-Kook
    • Journal of Korea Port Economic Association
    • /
    • v.32 no.2
    • /
    • pp.137-156
    • /
    • 2016
  • This study analyzes the optimal service levels of exclusive container terminals in terms of the optimal berth occupancy rate and the ships' waiting ratios, based on the number of berths. We develop a simulation model using berth throughput data from pier P, Busan New Port, a representative port in Korea, and apply the simulation results to different numbers of berths. In addition to the above results, we analyze the financial data and costs of delayed ships and delayed cargoes for the past three years from the viewpoints of the terminal operation company (TOC), shipping companies, and shippers to identify the optimal service level for berth occupancy rates that generate the highest net profit. The results show that the optimal levels in the container terminal are a 63.4% berth occupancy rate and 10.6% ship waiting ratio in berth 4,66.0% and 9.6% in berth 5, and 69.0% and 8.5% in berth 6. However, the results of the 2013 study by the Ministry of Maritime Affairs and Fisheries showed significantly different optimal service levels: a 57.1% berth occupancy rate and 7.4% ship waiting ratio in berth 4; 63.4% and 6.6% in berth 5; and 66.6% and 5.6% in berth 6. This suggests that optimal service level could change depending on when the analysis is performed. In other words, factors affecting the optimal service levels include exchange rates, revenue, cost per TEU, inventory cost per TEU, and the oil price. Thus, optimal service levels can never be fixed. Therefore, the optimal service levels for container terminals need to be able to change relatively quickly, depending on factors such as fluctuations in the economy, the oil price, and exchange rates.

Design Methodology of Yard Layout in Port Container Terminal (컨테이너터미널의 장치장 레이아웃 설계방법)

  • Choi Yong-Seok;Ha Tae-Young
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.11a
    • /
    • pp.183-188
    • /
    • 2004
  • This paper presents a method for designing layout on the yard and evaluating alternative designs of the layout by applying simulation. The design method is based on the concepts of the conventional port container terminal with yard layout, In general, yard design of the container terminal is consists of the two major parts. One is to divide yard area between the number of sections and the number of runs and the other is to decide the number of equipment that is the yard truck and yard crane. In the past days, this design was depended on the experience of the terminal operator and the reproduction of the conventional terminal layout because it is a very complex decision problem. In this paper, we suggest the method of yard design as a conceptual procedure and estimate the efficiency of the container crane and the optimal number of equipment using simulation. In the experiment results, the number of sections and runs on yard area, the number of yard truck per container crane and the number of yard crane per run are decided. In addition, the traffic flow among blocks on yard layout is estimated in terms of rate.

  • PDF

Analysis of the Impact of COVID-19 on Port Operation (컨테이너 항만운영에 대한 코로나19의 영향 분석 연구)

  • Kim, Sung-Ki;Kim, Chan-Ho
    • Journal of Navigation and Port Research
    • /
    • v.45 no.3
    • /
    • pp.155-164
    • /
    • 2021
  • The major factors that threaten port operation are diversie. Coronavirus disease-19, (COVID-19), which has recently disrupted operations worldwide, is one of them. Port operation was completely stopped due to a confirmed coronavirus involving a Russian sailor in Gamcheon Port, Busan, Korea in 2020, resulting port closure due to the infectious disease outbreak. The port is a national infrastructure facility that controls most of Korea's import and export logistics, and it is absolutely necessary to secure resilience against threats such as infectious diseases. However, due to insufficient data, this study was undertaken to determine a cause-effect relationship of infectious diseases during the container port operation using system dynamics. In addition, the port's resilience against infectious diseases was measured in terms of productivity and cargo volume through simulation. The model built via simulation analysis can actually be used to measure the resilience of a port. In the event of an infectious disease outbreak at a port, a quarantine policy scenario can be implemented and the effect compared, thereby improving the resilience.

Efficient Yard Operation for the Dual Cycling in Container Terminal (컨테이너 터미널의 효율적인 듀얼 사이클을 위한 야드 운영)

  • Chung, Chang-Yun;Shin, Jae-Young
    • Journal of Navigation and Port Research
    • /
    • v.35 no.1
    • /
    • pp.71-76
    • /
    • 2011
  • Recently, container terminal managers make an experiment on the double cycle and dual cycle operation, which ship loading and unloading were carried out simultaneously, for increasing the productivity of quay side. If, however, we make an experiment on dual cycle operation in a real job site, the efficiency is poor up to terminal operation method as YTs(Yard Tractors)' allocation method, QCs(Quay Cranes)' working speed, and position of export containers. Especially, using the existing yard operation method, it is difficult to support to dual and double cycle operation. Therefore, this paper examine more efficient terminal operation method, when terminal uses dual cycle operation. We developed a simulation model using simulation analysis software, Arena.

자동화 컨테이너 터미널의 이송 차량의 주행 경로 레이아웃 동적 최적화

  • Kim, Hu-Rim;Choe, Lee;Park, Tae-Jin;Ryu, Gwang-Ryeol
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2009.06a
    • /
    • pp.179-180
    • /
    • 2009
  • 자동화 컨테이너 터미널의 생산성을 향상시키기 위해서는 안벽크레인의 작업 지연 시간을 최소화하는 것이 중요하다. 안벽크레인의 작업 지연 시간은 이송 차량들이 효율적으로 주행하여 제 시간에 필요한 위치에 컨테이너를 운반함으로써 단축이 가능하다. 이송차량의 주행 경로는 사전에 결정된 레이아웃에서 최단 거리, 최단 시간 경로 등의 라우팅 방법을 통해 결정된다. 주행 경로 레이아웃은 안벽크레인의 작업이 진행됨에 따라 안벽 크레인의 위치, 작업 물량 및 병목지점이 변화하므로 동적으로 조정한 필요가 있다. 본 논문에서는 안벽 크레인의 위치 변화에 따라 주행 경로 레이아웃을 동적으로 최적화하는 방안을 제안한다. 제안방안의 효율성은 시뮬레이션 실험을 통해 검증하였다.

  • PDF

Simulation model for performance estimation of transport vehicle on automated container terminal (자동화 컨테이너 터미널의 이송장비 운영평가를 위한 시뮬레이션 모델)

  • 하태영;최용석;김우선
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.04a
    • /
    • pp.443-449
    • /
    • 2004
  • In this paper, we established a simulation model for transport vehicle that carries the container transportation between apron and yard block on automated container terminal with a perpendicular yard layout. Usually, the efficiency of container terminal is evaluated by productivity of container cranes at apron, and though there are enough support of transport vehicles and yard cranes, can improve the productivity of container cranes. Especially, transport vehicle is very important factor in productivity of container cranes and has variable work productivity according to loading and unloading situation of container cranes. Therefore, a method that can estimate work productivity of transport vehicle efficiently is required. We analyzed work productivity of transport vehicle using simulation model that has state transition of transport vehicle. We performed various simulation experiment and analyzed work productivity of transport vehicle and calculated the required number of transport vehicle by container crane additionally.

  • PDF

Design and Implementation of the Simulator for Evaluating the Performance of Container Cranes (컨테이너크레인 성능평가를 위한 시뮬레이터 설계 및 구현)

  • Won, Seung-Hwan;Choi, Sang-Hei
    • Journal of Intelligence and Information Systems
    • /
    • v.15 no.3
    • /
    • pp.119-136
    • /
    • 2009
  • According to the increase of container flows and the appearance of large-sized container vessels, the container handling equipment in ports is evolving continuously. This research introduces the simulation model for evaluating in detail the mechanical productivity of container cranes. The model considers a single trolley and dual trolleys as the mechanism of a container crane and a single lift, a twin lift, and a tandem lift as the spreader type of it. Additionally, the detail specifications such as the dimension and the speed of a container crane are inputted and the kinematic characteristics of it are simulated. The model also considers the size of a vessel, the storage position of containers in the vessel, and the weight of containers as external physical constraints. Experimental conditions can be configured conveniently because various parameters in the model are separated. Moreover, the model can accommodate flexibly new equipment types and the changes of the existing equipment because it is designed and developed in object-oriented concept.

  • PDF

Three-Dimensional Container Packing Problem with Freight Priority (우선순위를 고려한 컨테이너 3차원 적재문제)

  • Bae, Min-Ju;Choi, Se-Kyoung;Kim, Hwan-Seong
    • Journal of Navigation and Port Research
    • /
    • v.28 no.6
    • /
    • pp.531-539
    • /
    • 2004
  • In this paper, we propose a new heuristic solution for 3D container packing problem for the variable sizes and types of freight. Frist of all, we consider the total cost of container charge i.e., handling, loading and transportation, where each freight will be specifically identified The types of containers and its number to be loaded am be selected automatically by minimizing the total cost of container charge. Maximization of loading space am be achieved efficiently by operating the palletizing and/or depalletizing of freight. By considering these factors we can determine the position of freight in the container and the loading sequence to be packing into the container. In container packing simulation, we can verify that the proposed heuristic algorithm indicates more efficiency space utilization and shows the possibility of using on commercial business.

A Simulation Study on the Deadlock of a Rail-Based Container Transport System (레일기반 컨테이너 이송 시스템의 교착에 관한 시뮬레이션 연구)

  • Seo, Jeong-Hoon;Yi, Sang-Hyuk;Kim, Kap-Hwan
    • Journal of Navigation and Port Research
    • /
    • v.42 no.1
    • /
    • pp.47-56
    • /
    • 2018
  • In this study, the focus is on the issue of whether a container terminal is facing the limitation of its productivity for serving mega-vessels with numerous containers. In order to enhance the terminal operations, a new conceptual design of the container handling system have been proposed. This research focuses on the rail-based container transport system and its operations. This system consists of rail-based shuttle cranes and rail-based transporters called flatcars. The deadlock problem for managing automated transporters in container terminals has been an important issue for a long measurement of time. Therefore, this study defines the deadlock situation and proposes its avoidance rules at the rail-based container transport system, which is required to handle numerous container throughput operations. The deadlock in the rail-based container transport system is classified into two parts: deadlock between cranes and flatcars; deadlock between flatcars. We developed the simulation model for use with characterizing and analyzing the rail-based container transport system. By running the simulation, we derived possible deadlock situations, and propose the several deadlock avoidance algorithms to provide results for these identified situations. In the simulation experiments, the performances of the deadlock avoidance algorithms are compared according to the frequency of deadlocks as noted in the simulations.