• Title/Summary/Keyword: 항력 모델

Search Result 148, Processing Time 0.028 seconds

An Experimental Study of Asymmetric Vortices around Slender Bodies during High Angle of Attack Maneuver (세장형 몸체의 고받음각 기동에서 발생하는 비대칭와류에 관한 실험적 연구)

  • Jeon, Young-Jin;Seo, Hyung-Seok;Choi, Wom-Hyeok;Byun, Yung-Hwan;Lee, Jae-Woo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.71-76
    • /
    • 2008
  • In this study, side force, drag, and the yawing moment were measured based on the angle of attack by using two models of different nose shapes with slender bodies, which were general shapes in the subsonic area. As a result, the side force and yawing moment were the highest at a specific angle of attack. The boundary between asymmetrical normal state and asymmetrical abnormal state were able to be seen. As a result of analyzing the side force, drag, and yawing moment by time, reliability varied depending on the shape of the head at the same angle of attack. The results of measuring pressure distribution from the surface of the slender body at each angle of attack were as follows: as the angle of attack gets higher, the distribution of surface pressure was asymmetrical.

  • PDF

Aerodynamic Characteristics of an Insect-type Flapping Wings (곤충 모방 플래핑 날개의 공력 특성)

  • Han, Jong-Seob;Chang, Jo-Won;Choi, Hae-Cheon;Kang, In-Mo;Kim, Sun-Tae
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.311-314
    • /
    • 2007
  • Aerodynamic characteristics of an insect-type flapping wings were carried out to obtain the design parameters of Micro Hovering Air Vehicle. A pair of wing model was scaled up about 200 times and applied two pairs of 4-bar linkage mechanism to mimic the wing motion of a fruit fly(Drosophila). To verify the Weis-Fogh mechanism, a pair of wings revolved on the 'Delayed Rotation'. Lift and drag were measured in conditions of the Reynolds number based on wing tip velocity of about 1,200 and the maximum angle of attack of 40$40^{\circ}$. Inertia forces of a wing model were also measured by using a 99.98% vacuum chamber and subtracted on measured data in air. In the present study, high lift effect of Weis-Fogh mechanism was appeared in the middle of upstroke motion.

  • PDF

Numerical Study on the Drag of a Car Model under Road Condition (주행조건에서의 자동차 모델 항력에 대한 수치해석적 연구)

  • Kim, Beom-Jun;Kang, Sung-Woo;Choi, Hyoung-gwon;Yoo, Jung-Yul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.8
    • /
    • pp.1182-1190
    • /
    • 2003
  • A parallelized FEM code based on domain decomposition method has been recently developed for large-scale computational fluid dynamics. A 4-step splitting finite element algorithm is adopted for unsteady flow computation of the incompressible Navier-Stokes equation, and Smagorinsky LES model is chosen for turbulent flow computation. Both METIS and MPI Libraries are used for domain partitioning and data communication between processors, respectively. Tiburon model of Hyundai Motor Company is chosen as the computational model at Re=7.5 $\times$ 10$^{5}$ , which is based on the car height. The calculation is carried out under both the wind tunnel condition and the road condition using IBM SP parallel architecture at KISTI Super Computing Center. Compared with the existing experimental data, both the velocity and pressure fields are predicted reasonably well and the drag coefficient is in good agreement. Furthermore, it is confirmed that the drag under the road condition is smaller than that under the wind-tunnel condition.

Performance Analysis of Autorotation(1) : Analysis Method and the Effect of Aerodynamic table (자동회전의 성능해석(1) : 해석 기법과 공력 테이블의 영향)

  • Kim, Hak-Yoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.1
    • /
    • pp.1-11
    • /
    • 2012
  • Performance analysis was performed for an autorotating rotor. For a given airspeed, shaft angle, and collective pitch, the steady state of autorotation was judged by using the transient simulation method(TSM), then the thrust, lift, and drag coefficient for that state were computed. Average thrust was calculated from the instantaneous thrusts, in which the TSM was used in blade thrust integration. The analysis method was applied to the model rotor that had been tested by wind tunnel. Some comparison between analysis and test was provided. Two types of two-dimensional airfoil aerodynamic data were utilized in analysis, and they were made by Navier-Stokes Solver in terms of Reynolds and Reynolds-Mach number. The quantitative difference of results using two data set was examined and compared.

Multi-objective Optimal Design for the Low Drag Tail Shape of the MIRA model with the Lift Effect taken into account (양력 효과를 고려한 MIRA model 후미의 저저항 다목적 최적설계)

  • Lee Juhee;Lee Kyunghuhn;Kim Joonbae
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.565-568
    • /
    • 2002
  • In the flow analysis around a bluffbody such as road vehicles, drag reduction has been of the primary concern mainly due to the effect on fuel economy. To reduce the drag, which is mostly due to the pressure difference caused by the flow separation, the location of the separation and eddy sizes are controlled. However, less attention has been given to the effect of the lift. The effect of lift may cause the driving stability problem of the vehicle at high speed white heavy downward effect of lift together with the vehicle weight may require more power to drive the vehicle forward. It is considered worthwhile to pursue the optimal design of the low drag tail shape of the MIRA model while taking the lift effect into account, even though it is considered as a reference. To this end, a commercial multi-objective optimization code, FRONTIER, Is used together with the CFD code, STAR-CD. It is hoped that the results will provide more insight into the flow field around the bluffbody as transportation means.

  • PDF

Dynamic Behavior Analysis of Mechanical Monoleaflet Heart Valve Prostheses (기계식 一葉심장밸브의 동적거동 해석)

  • 천길정
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.11
    • /
    • pp.2090-2097
    • /
    • 1992
  • In this paper, fluttering behavior of mechanical monloleaflet heart valve prosthesis was analyzed taking into consideration of the impact between the valve occluder and the stopper. The motion of valve occluder was modeled as a rotating system, and equations were derived by employing the moment equilibrium conditions. Lift force, drag force, gravity and buoyancy were considered as external forces acting on the valve occluder. The 4th order Runge-Kutta method was used to solve the equations. The results demonstrated that the occluder reaches steady eguilibrium position only after damped vibration. The mean damping ratio is in the range of 0.197-0.301. Fluttering frequency does not have any specific value, but varies as a function of time. It is in the range of 11-84Hz. Valve opening appears to be affected by the orientation of the valve relative to gravitational forces.

Numerical Study an Drop Breakup in Air-Assisted Spray Using the TAB Model with a Modified Drop Drag Model (TAB 모텔과 수정된 액적 항력 모텔을 이용한 공기 보초 분무에서의 액적 분열에 대한 수치적 연구)

  • 고권현;유홍선;이성혁;홍기배
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.2
    • /
    • pp.87-95
    • /
    • 2002
  • The aim of this article is to perform the numerical simulation far drop drag and breakup processes in air-assisted sprays using the Taylor analogy breakup (TAB) model with a modified drop drag model, in which a random method is newly used to consider the variation of the drop's frontal area. The predicted results for drop trajectory and Salter mean diameter (SMD) were compared with experimental data and the simulation results using the earlier published models such as TAH model, surface wave instability (Wave) model, and Wave model with original drop drag model. In addition, the effects of the breakup model constant, Ck, on prediction of spray behaviors were discussed. The results shows that the TAB model with the modified drop drag model is in better agreement with experimental data than the other models, indicating the present model is acceptable for predicting the drop breakup process in air-assisted sprays. At higher Weber numbers, the smaller Ck shows the best fitting to experimental data. It should be noted that more elaborated studies is required in order to determine the breakup model constant in the suggested model in the study.

Effect of Trunk Height and Approaching Air Velocity of Notchback Road Vehicles on the Pressure Distribution of the Car Surface (Notchback자동차의 트렁크 높이와 공기속도가 차체 표면의 압력변화에 미치는 영향)

  • 박종수;최병대;김성준
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.6
    • /
    • pp.178-186
    • /
    • 2002
  • 3-D numerical studies are performed to investigate the effect of the trunk height and approaching air velocities on the pressure distribution of notchback road vehicle. For this purpose, the models of test vehicle with four different trunk heights are introduced and PHOENICS, a commercial CFD code, is used to simulate the flow phenomena and to estimate the values of pressure coefficients along the surface of vehicle. The standard k-$\xi$ model is adopted for the simulation of turbulence. The numerical results say that the height variation of trunk makes almost no influence on the distribution of the value of pressure coefficient along upper surface but makes very strong effects on the rear surface. That is, the value of pressure coefficient becomes smaller as the height is increased along the rear surface and the bottom surface. Approaching air velocity make no differences on pressure coefficients. Through the analysis of pressure coefficient on the vehicle surfaces one tried to assess aerodynamic drag and lift of vehicle. The pressure distribution on the rear surface affected more on drag and lift than pressure distribution on the front surface of the vehicle does. The increase of trunk height makes positive effects on the lift decrease but negative effects on drag reduction.

Effects of Tsunami Waveform on Energy Dissipation of Aquatic Vegetation (쓰나미 파형이 수중식생의 에너지소산에 미치는 영향)

  • Lee, Woo-Dong;Park, Jong-Ryul;Jeon, Ho-Seong;Hur, Dong-Soo
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.2
    • /
    • pp.121-129
    • /
    • 2017
  • The present study numerically investigated the influence of the waveform distribution on the tsunami-vegetation interaction using a non-reflected wave generation system for various tsunami waveforms in a two-dimensional numerical wave tank. First, it was possible to determine the wave attenuation mechanism due to the tsunami-vegetation interaction from the spatial waveform, flow field, vorticity field, and wave height distribution. The combination of fluid resistance in the vegetation and a large gap and creates a vortex according to the flow velocity difference in and out of the vegetation zone. Thus, the energy of a tsunami was increasingly reduced, resulting in a gradual reduction in wave height. Compared to existing approximation theories, the double volumetric ratio of the waveform increased the reflection coefficient of the tsunami-vegetation interaction by 34%, while decreasing the transfer coefficient and energy attenuation coefficient by 25% and 13%, respectively. Therefore, the hydraulic characteristics of a tsunami is highly likely to be underestimated if the solitary wave of the approximation theory is applied for the tsunami.

Development of a Multi-joint Robot system that enables adaptive driving of wheels and joints (주행 환경에 따라 바퀴와 관절 주행을 동적으로 변경하는 다관절 로봇 시스템 개발)

  • Sang-Eun Park;Min-Kyu Cho;Sung-Wook Park;Gun-A Lee;Seo-Hui Park
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.902-903
    • /
    • 2023
  • 장애물이나 경사지가 많은 협소 지역에서 탐사 활동을 수행하는 로봇은 험지에서도 이동할 수 있는 자율주행 방법을 필수적으로 제공해야 한다. 본 논문은 협소 지역에서 탐사와 객체 탐지를 위해 주행 상황에 따라 바퀴 주행과 관절 주행을 동적으로 변경하면서 이동하는 다관절 로봇 시스템을 제안한다. 다관절 로봇은 마찰력과 수직항력, 토크 값 등을 고려해 설계한 운동 모델을 기반으로 바퀴와 관절 이동을 변경하면서 자율적으로 주행한다. 관리자는 관제 서버를 통해 로봇이 수집한 탐사 정보를 실시간으로 확인하고 필요시 로봇의 원격제어를 수행할 수 있다. 본 연구를 통해 사람이 접근하기 어려운 협소 지역 탐사나 재난지역 인명구조 활동에 활용할 수 있기를 기대한다.