• Title/Summary/Keyword: 항공 안전

Search Result 1,342, Processing Time 0.027 seconds

X-band Pulsed Doppler Radar Development for Helicopter (헬기 탑재 X-밴드 펄스 도플러 레이다 시험 개발)

  • Kwag Young-Kil;Choi Min-Su;Bae Jae-Hoon;Jeon In-Pyung;Hwang Kwang-Yun;Yang Joo-Yoel;Kim Do-Heon;Kang Jung-Wan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.8 s.111
    • /
    • pp.773-787
    • /
    • 2006
  • An airborne radar is an essential aviation electronic system for the aircraft to perform various civil and/or military missions in all weather environments. This paper presents the design, development, and test results of the multi-mode X-band pulsed Doppler radar system test model for helicopter-borne flight test. This radar system consists of 4 LRUs(Line-Replacement Unit), which include antenna unit, transmitter and receiver unit, radar signal & data processing unit and display Unit. The developed core technologies include the planar array antenna, TWTA transmitter, coherent I/Q detector, digital pulse compression, MTI, DSP based Doppler FFT filter, adaptive CFAR, moving clutter compensation, platform motion stabilizer, and tracking capability. The design performance of the developed radar system is verified through various ground fixed and moving vehicle test as well as helicopter-borne field tests including MTD(Moving Target Detector) capability for the Doppler compensation due to the moving platform motion.

Wide Integrated Surveillance System of Marine Territory Using Multi-Platform (다중플랫폼을 이용한 해양영토 광역통합감시 시스템)

  • Ryu, Joo-Hyung;Lee, Seok;Kim, Duk-jin;Hwang, Jae Dong
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.2_2
    • /
    • pp.307-311
    • /
    • 2018
  • It is necessary to establish wide integrated surveillance system of marine territory to reduce damage caused by maritime security threats, marine pollution and accidents for safe and clean marine use and efficient development of marine resources. For marine surveillance, the information characteristics of space-time specific, accuracy and operability are required, and real-time information about the wide area should be provided at all times. This special issue has been published to identify the characteristics of each platform, evaluate its usability for the establishment of a wide integrated surveillance system, and present the direction for future convergence studies between platforms. Since 2015, KIOST and cooperative research team have been performing the project, "Base research for building wide integrated surveillance system of marine territory using multi-platform" that detect vessels and red tide etc. near real time by using satellite, UAV and HF Ocean Radar. The objective of this special issue is to introduce the significance for an integrated system for maritime surveillance and to create a forum for discussion on recent advances in remote sensing technology and applications for marine disasters, pollution, and accident surveillance.

3D Visualization Techniques for Volcanic Ash Dispersion Prediction Results (화산재 확산 예측결과의 삼차원 가시화 기법)

  • Youn, Jun Hee;Kim, Ho Woong;Kim, Sang Min;Kim, Tae Hoon
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.1
    • /
    • pp.99-107
    • /
    • 2016
  • Korea has been known as volcanic disaster free area. However, recent surveying result shows that Baekdu mountain located in northernmost in the Korean peninsula is not a dormant volcano anymore. When Baekdu mountain is erupting, various damages due to the volcanic ash are expected in South Korea area. Especially, volcanic ash in the air may cause big aviation accident because it can hurt engine or gauges in the airplane. Therefore, it is a crucial issue to interrupt airplane navigation, whose route is overlapped with volcanic ash, after predicting three dimensional dispersion of volcanic ash. In this paper, we deals with 3D visualization techniques for volcanic ash dispersion prediction results. First, we introduce the data acquisition of the volcanic ash dispersion prediction. Dispersion prediction data is obtained from Fall3D model, which is volcanic ash dispersion simulation program. Next, three 3D visualization techniques for volcanic ash dispersion prediction are proposed. Firstly proposed technique is so called 'Cube in the Air', which locates the semitransparent cubes having different color depends on its particle concentration. Second technique is a 'Cube in the Cube' which divide the cube in proportion to particle concentration and locates the small cubes. Last technique is 'Semitransparent Volcanic Ash Plane', which laminates the layer, whose grids present the particle concentration, and apply the semitransparent effect. Based on the proposed techniques, the user could 3D visualize the volcanic ash dispersion prediction results upon his own purposes.

Susceptibility of Myzus persicae on Potato field and Riptortus clavatus on Soybean field to Insecticides treated by Multi-copter (농업용 멀티콥터를 활용한 감자의 복숭아혹진딧물과 콩의 톱다리개미허리노린재의 약제방제 효율)

  • Park, Bueyong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.231-236
    • /
    • 2021
  • The Aphid, Myzus persicae, and the bean bug, Riptortus clavatus, are major insects in crops. This study examined the insecticide susceptibility and phytotoxicity of insecticides dispersed using an Unmanned Aerial Vehicle (UAV, multi-copter) against the insects. Sulfoxaflor suspension concentrate (SC, 16X) on potato fields and etofenprox, methoxyfenzide suspo-emulsion(SE, 8X) on soybean fields were dispersed after deploying water-sensitive paper within the field to measure the distribution pattern and coverage index of the falling insecticide. Both insecticides showed a controlled mortality of 76.4% against aphids and 97.5% and 94.4% against the 2nd nymphal, and 5th nymphal stage of the bugs, respectively. The droplet distribution was less than 0.5mm, and coverage analysis revealed an inside and outside coverage of 3.1 and 1.6, respectively. The surrounding area was affected by insecticide spraying using a multi-copter. This study is expected to help expand UAV control and use it safely in the future.

Accuracy Analysis for Slope Movement Characterization by comparing the Data from Real-time Measurement Device and 3D Model Value with Drone based Photogrammetry (도로비탈면 상시계측 실측치와 드론 사진측량에 의한 3D 모델값의 정확도 비교분석)

  • CHO, Han-Kwang;CHANG, Ki-Tae;HONG, Seong-Jin;HONG, Goo-Pyo;KIM, Sang-Hwan;KWON, Se-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.4
    • /
    • pp.234-252
    • /
    • 2020
  • This paper is to verify the effectiveness of 'Hybrid Disaster Management Strategy' that integrates 'RTM(Real-time Monitoring) based On-line' and 'UAV based Off-line' system. For landslide prone area where sensors were installed, the conventional way of risk management so far has entirely relied on RTM data collected from the field through the instrumentation devices. But it's not enough due to the limitation of'Pin-point sensor'which tend to provide with only the localized information where sensors have stayed fixed. It lacks, therefore, the whole picture to be grasped. In this paper, utilizing 'Digital Photogrammetry Software Pix4D', the possibility of inference for the deformation of ungauged area has been reviewed. For this purpose, actual measurement data from RTM were compared with the estimated value from 3D point cloud outcome by UAV, and the consequent results has shown very accurate in terms of RMSE.

A Study on the Impact of Motives for Participating in Gyeongsangbuk-do Experience Tourists on Satisfaction with Experiential Tourism Programs and Intention to Participate (경상북도 체험관광객의 참여 동기가 체험 관광프로그램 만족 및 참여 의사에 미치는 영향에 관한 연구)

  • Lee, Sun-Min;Kim, Ho-Suk;Kang, Hee-Seog
    • Journal of Korea Entertainment Industry Association
    • /
    • v.15 no.4
    • /
    • pp.1-13
    • /
    • 2021
  • In this study, we tried to present suggestions to the Gyeongsangbuk-do tourism officials to satisfy them with experiential tourism resources and to revitalize their participation in the program. Therefore, the implications of this study are as follows. First, research on the satisfaction of experiential tourism programs and the willingness to participate in them is carried out, suggesting that it is a prerequisite for the transformation of the perception of tourists' participation in the Corona era. Second, it is necessary to make it a small experience tourist space that can provide non-face-to-face service utilizing the characteristics of contact technology, and to provide tourists with unique attractions against product discrimination and customer service. Third, through the introduction of non-face-to-face experience programs and expansion of services, the limited and macroscopic environment and social phenomenon of tourism activities in the Corona era, a new perception can be instilled. Fourth, visitors can expect to revitalize the tourism industry through the development and discovery of various programs. Thirdly, it will be possible to revitalize the local economy by giving meaning to the satisfaction of experiential tourism programs to tourists from all over the region's tourism business.

Domestic Tourism Revitalization Policies According to the Satisfaction of Visitation with the Image of Tourist Attraction for Experiential Tourism (체험관광 방문동기가 관광지 이미지의 방문 만족에 따른 국내 관광 활성화 정책 연구)

  • Park, Hwan-Tae;Lee, Youn-Oak
    • Journal of Korea Entertainment Industry Association
    • /
    • v.15 no.7
    • /
    • pp.235-247
    • /
    • 2021
  • The purpose of this study was to examine whether the motivation for visiting experiential tourism can be maximized by revitalization of domestic tourism according to tourist image and visit satisfaction. In order to achieve this purpose, the four factors of educational motive, experiential motive, cultural motive, and communion motive of experiential tourists who visited domestic experiential tourist destinations, as well as the image of tourist destination, and suggestions for revitalizing domestic tourism through visit satisfaction were proposed. Therefore, the implications of this study are as follows. First, theoretical significance can be found by establishing the concept of domestic experience tourists' visit motives, image of tourist destinations and results related to visit satisfaction in the COVID-19 according to this study. It suggests that it is an essential condition for promoting a new change in which tourists participate in experiential tourism motives in the era of the pandemic by providing experiential tourism programs that are tailored to the level of tourists through research on the image of tourist destinations and their satisfaction with their visit motives. are giving Second, in terms of experiential tourism programs operated by domestic experiential tourism companies, it should be possible to promote the image of a safe tourist destination utilizing the characteristics of untact services that can provide non-face-to-face services. In addition, in an environment where visits to experiential tourism activities are somewhat limited in the era of the pandemic corona, it will help to revitalize domestic tourism and the local economy by expanding the non-face-to-face service to discover and develop direct experience programs in the region.

Impact of Renewable Energy on Extension of Vaccine Cold-chain: a case study in Nepal (신재생 에너지의 백신 콜드체인 확장 효과: 네팔 사례 연구)

  • Kim, Min-Soo;Mun, Jeong-Wook;Yu, Jongha;Kim, Min-Sik;Bhandari, Binayak;Bak, Jeongeun;Bhattachan, Anuj;Mogasale, Vittal;Chu, Won-Shik;Lee, Caroline Sunyong;Song, Chulki;Ahn, Sung-Hoon
    • Journal of Appropriate Technology
    • /
    • v.6 no.2
    • /
    • pp.94-102
    • /
    • 2020
  • Renewable energy (RE) is essential to comprise sustainable societies, especially, in rural villages of developing countries. Furthermore, application of off-grid RE systems to health care can improve the quality of life. In this research, a RE-based vaccination supply management system was constructed to enlarge the cold-chain in developing countries for the safe storage and delivery of vaccines. The system was comprised of the construction of RE plants and development of vaccine carriers. RE plants were constructed and connected to health posts in local villages. The cooling mechanism of vaccine carriers was improved and monitoring devices were installed. The effect of the system on vaccine cold-chain was evaluated from the field test and topographical analysis in the southern village of Nepal. RE plants were normally operated for the vaccine refrigerator in the health post. The modified vaccine carriers had a longer operation time and better temperature control via monitoring and RE-based recharging functionality. The topographical analysis estimated that the system can cover larger region. The system prototype showed great potential regarding the possibility of a sustainable and enlarged cold-chain. Thus, RE-based vaccine supply management is expected to facilitate vaccine availability while minimizing waste in the supply chain.

Developments of Space Radiation Dosimeter using Commercial Si Radiation Sensor (범용 실리콘 방사선 센서를 이용한 우주방사선 선량계 개발)

  • Jong-kyu Cheon;Sunghwan Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.3
    • /
    • pp.367-373
    • /
    • 2023
  • Aircrews and passengers are exposed to radiation from cosmic rays and secondary scattered rays generated by reactions with air or aircraft. For aircrews, radiation safety management is based on the exposure dose calculated using a space-weather environment simulation. However, the exposure dose varies depending on solar activity, altitude, flight path, etc., so measuring by route is more suggestive than the calculation. In this study, we developed an instrument to measure the cosmic radiation dose using a general-purpose Si sensor and a multichannel analyzer. The dose calculation applied the algorithm of CRaTER (Cosmic Ray Telescope for the Effects of Radiation), a space radiation measuring device of NASA. Energy and dose calibration was performed with Cs-137 662 keV gamma rays at a standard calibration facility, and good dose rate dependence was confirmed in the experimental range. Using the instrument, the dose was directly measured on the international line between Dubai and Incheon in May 2023, and it was similar to the result calculated by KREAM (Korean Radiation Exposure Assessment Model for Aviation Route Dose) within 12%. It was confirmed that the dose increased as the altitude and latitude increased, consistent with the calculation results by KREAM. Some limitations require more verification experiments. However, we confirmed it has sufficient utilization potential as a cost-effective measuring instrument for monitoring exposure dose inside or on personal aircraft.

Evaluation of Applicability for 3D Scanning of Abandoned or Flooded Mine Sites Using Unmanned Mobility (무인 이동체를 이용한 폐광산 갱도 및 수몰 갱도의 3차원 형상화 위한 적용성 평가)

  • Soolo Kim;Gwan-in Bak;Sang-Wook Kim;Seung-han Baek
    • Tunnel and Underground Space
    • /
    • v.34 no.1
    • /
    • pp.1-14
    • /
    • 2024
  • An image-reconstruction technology, involving the deployment of an unmanned mobility equipped with high-speed LiDAR (Light Detection And Ranging) has been proposed to reconstruct the shape of abandoned mine. Unmanned mobility operation is remarkably useful in abandoned mines fraught with operational difficulties including, but not limited to, obstacles, sludge, underwater and narrow tunnel with the diameter of 1.5 m or more. For cases of real abandoned mines, quadruped robots, quadcopter drones and underwater drones are respectively deployed on land, air, and water-filled sites. In addition to the advantage of scanning the abandoned mines with 2D solid-state lidar sensors, rotation of radiation at an inclination angle offers an increased efficiency for simultaneous reconstruction of mineshaft shapes and detecting obstacles. Sensor and robot posture were used for computing rotation matrices that helped compute geographical coordinates of the solid-state lidar data. Next, the quadruped robot scanned the actual site to reconstruct tunnel shape. Lastly, the optimal elements necessary to increase utility in actual fields were found and proposed.