• Title/Summary/Keyword: 항공우주비행체

Search Result 442, Processing Time 0.021 seconds

Thrust and torque prediction of multicopter propeller in hovering based on BET method (BET 기법을 이용한 멀티콥터 프로펠러의 정지비행시 추력 및 토크 계산)

  • Lee, Bumsik;Woo, Heeseung;Lee, Dogyeong;Chang, Kyoungsik;Lee, Dongjin;Kim, Minwoo
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.6
    • /
    • pp.23-31
    • /
    • 2018
  • In the present work, the thrust and torque of multicopter propellers in hovering are predicted based on BET method. The geometry information of the propellers is obtained using a three dimensional scanner and the airfoil section is extracted using CATIA. EDISON CFD is adopted to calculate the drag and lift of airfoil at a given geometry and flow conditions and then thrust is calculated with respect to a given RPMs based on BET. Two simulations with laminar and turbulent flows are considered. The predicted value is compared with the performance data from the Product Company and results from JavaProp software, which is used in the design and prediction of propellers. In the case of a 9-inch propeller, the thrust from the product company is corresponding to the results between the laminar and turbulent flow conditions. In the 16-inch case, the predicted thrust at turbulent flow conditions conformed well with reference one. The predicted torque shows a big difference with the reference data.

Legal Issues Regarding the Civil Injunction Against the Drone Flight (토지 상공에서의 드론의 비행자유에 대한 제한과 법률적 쟁점)

  • Shin, Hong-Kyun
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.35 no.2
    • /
    • pp.75-111
    • /
    • 2020
  • The civilian drone world has evolved in recent years from one dominated by hobbyists to growing involvement by companies seeking to profit from unmanned flight in everything from infrastructure inspections to drone deliveries that are already subject to regulations. Drone flight under the property right relation with the land owner would be deemed legal on the condition that expeditious and innocent passage of drone flight over the land be assured. The United Nations Convention on the Law of the Sea (UNCLOS) enshrines the concept of innocent passage through a coastal state's territorial sea. Passage is innocent so long as it is not prejudicial to the peace, good order or security of the coastal state. A vessel in innocent passage may traverse the coastal state's territorial sea continuously and expeditiously, not stopping or anchoring except in force majeure situations. However, the disturbances caused by drone flight may be removed, which is defined as infringement against the constitutional interest of personal rights. For example, aggressive infringement against privacy and personal freedom may be committed by drone more easily than ever before, and than other means. The cost-benefit analysis, however, has been recognjzed as effective criteria regarding the removal of disturbances or injunction decision. Applying that analysis, the civil action against such infringement may not find suitable basis for making a good case. Because the removal of such infringement through civil actions may result in only the deletion of journal article. The injunction of drone flight before taking the information would not be obtainable through civil action, Therefore, more detailed and meticulous regulation and criteria in public law domain may be preferable than civil action, at present time. It may be suitable for legal stability and drone industry to set up the detailed public regulations restricting the free flight of drone capable of acquiring visual information amounting to the infrigement against the right of personal information security.

Development of lighter than air-vehicle envelope (L.T.A(lighter than air-vehicle) 기낭 개발)

  • Choi, Dong-Su;Kang, Wang-Gu;Kim, Dong-Min;Yeom, Chan-Hong;Park, Seung-Sin;Hong, Eu-Seok
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.217-220
    • /
    • 2005
  • 한국항공우주연구원과 신영중공업(주)는 L.T.A 비행체의 주구조물인 기낭(envelope)의 설계 및 제작을 국내 기술에 의해 개발하는데 성공하였다. 막재료를 고어로 재단하여 열접합으로 이어 붙여 제작하는 기낭의 개발에는 설계 및 제작에 기존의 항공기와는 구별되는 설계 및 제작기술이 요구된다. 본 연구에서는 개념설계 단계로부터 제작도면화 및 생산에 이르기 까지 전 공정을 국산화하는데 성공하였다. 본 논문에서는 이번 연구성과를 요약하였다.

  • PDF

Optimal Earth-Moon Trajectory Design using Constant and Variable Low Thrust (등저추력과 가변저추력을 이용한 지구-달 천이궤적 설계)

  • Song, Young-Joo;Park, Sang-Young;Choi, Kyu-Hong;Sim, Eun-Sup
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.9
    • /
    • pp.843-854
    • /
    • 2009
  • For preparing Korean lunar missions, optimal Earth-Moon transfer trajectory is designed using continuous low thrust. Using both constant and variable low thrusting method, "End-to-End" mission analysis is made from beginning of the Earth departure to the final lunar arrival. Spacecraft's equations of motion is expressed using N-body dynamics including the gravitational effects due to the Earth, Moon, Sun and also with Earth's $J_2$ effects. Planets' exact locations are computed accurately with JPL's DE405 ephemeris. As a results, optimal thrust steering angle's characteristics are discovered which showed almost tangential direction burns at the near of central planets. Also, it is confirmed that variable low thrusting method is more efficient than constant thrusting method, and can save about 5% of fuel consumption. Presented algorithm and various results will give numerous insights into the future Korea's Lunar missions using low thrust engines. Also, it is expected to be used as a basis of more detailed mission analyzing tool.

Design of the COMS Satellite Ground Control System (통신해양기상위성 관제시스템 설계)

  • Lee, Byeong-Seon;Jeong, Won-Chan;Lee, Sang-Uk;Lee, Jeom-Hun;Kim, Jae-Hun
    • Journal of Satellite, Information and Communications
    • /
    • v.1 no.2
    • /
    • pp.16-24
    • /
    • 2006
  • As a multi-mission GEO satellite, COMS system is being developed jointly by KARI, ETRI, KORDI, KMA, and industries from both abroad and domestic. EADS ASRTIUM is the prime contractor for manufacturing the COMS. ETRI is developing the COMS Ka-band payload and SGCS with the fund from MIC. COMS Satellite Ground Control System (SGCS) will be the only system for monitor and control of the satellite in orbit. In order to fulfill the mission operations of the three payloads and spacecraft bus, COMS SGCS performs telemetry reception and processing, satellite tracking and ranging, command generation and transmission, satellite mission planning, flight dynamics operations, and satellite simulation, By the proper functional allocations, COMS SGCS is divided into five subsystems such as TTC, ROS, MPS, FDS, and CSS. In this paper, functional design of the COMS SGCS is described as five subsystems and the interfaces among the subsystems.

  • PDF

An Analysis of Threat Factors for Strengthen Maritime Safety around Delphi/AHP-Based Launch Site and Flight Paths (Delphi/AHP 기반 발사장 주변 및 비행경로의 해상안전 강화를 위한 위협요인 분석)

  • Ahn-Tae Shin;Byung-Mun Park;Hun-Soo Byun
    • Korean Chemical Engineering Research
    • /
    • v.61 no.2
    • /
    • pp.208-216
    • /
    • 2023
  • In this study, using the Delphi method, 20 responses to 4 questions (need for launch safety control, top-priority considerations for ensuring public safety during launch, necessary improvements for securing maritime safety, and maritime safety threat factors) regarding launch vehicles and public safety were obtained from experts, and their importance was evaluated to analyze the factors that threaten the reinforcement of maritime safety around launch sites and flight paths when launching. According to the results of an analytic hierarchy process (AHP) analysis, the consistency ratio of the four questions was 4.8%, which is lower than CR ≤ 0.1(10%), and the consistency percentage of the lower measurement indicators was 3.9~5.7%. The derived importance and priority of maritime safety threat factors during launching were in the following order: Substantial human and physical damage in case of launch accidents(0.36), Prepare legal bases (e.g., penalty details) regarding maritime control(0.32), Secure the safety of personnel, equipment, and facilities in danger zone(0.31), Unauthorized entry of vessels in maritime control zones and non-compliance to restrictions(0.30). This article can serve as a reference for strengthening maritime safety in areas around launch sites and flight paths.

Numerical Analysis on Aerodynamic Performances and Characteristics of Quad Tilt Rotor during Forward Flight (전진 비행하는 쿼드 틸트 로터의 공력성능 및 특징에 대한 수치적 연구)

  • Lee, Seonggi;Oh, Sejong;Choi, Seongwook;Lee, Yunggyo;Park, Donghun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.3
    • /
    • pp.197-209
    • /
    • 2018
  • In this study, numerical analyses on Quad Tilt Rotor(QTR) are carried out to investigate the interference effect of components and effect of operating condition during forward flight. Actuator Surface Method(ASM) which is implemented in an open source CFD code, OpenFOAM, is used to calculate the flow field around QTR with high computational efficiency. The lift of the front and rear wing is found to increase or decrease depending on the rotation direction of the rotor. At the rear wing, the interference effects of the front and rear rotor appear as a combined manner. Performance change due to the phase difference is found to be insignificant. For both rotors, the locally higher thrust is generated by the blockage effect of the wing. The interference effect of wake from the front nacelle contributes to higher local thrust for the rear rotor compared to the front rotor. And it is observed that the amplitude of thrust oscillation can decrease depending on the phase difference between the rotors. Aerodynamic performances of both rotors and the entire aircraft were compared and analyzed for various operating conditions.

Measurement of Dynamic Stability Derivatives of Tailless Lamda-shape UAV using Forced Oscillation Method (강제진동 기법을 이용한 무미익 비행체의 동안정 미계수 측정)

  • Yang, Kwangjin;Chung, Hyoungseog;Cho, Donghyun;An, Eunhye;Ko, Joonsoo;Hong, JinSung;Kim, Yongduk;Lee, MyungSup;Hur, Gi-Bong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.7
    • /
    • pp.552-561
    • /
    • 2016
  • In this experimental study, the dynamic stability derivatives of a tailless lambda-shape UAV are estimated from time history data of aerodynamic moments measured from the internal balance while the test model is forced to oscillate at given frequencies and amplitudes. A 3-axis forced oscillation apparatus is designed to induce decoupled roll, yaw, pitch oscillations respectively. The results show that the roll damping derivatives remain stable at the entire range of angle of attack tested, whereas the pitch damping derivatives become unstable beyond $15^{\circ}$ angle of attack. The amplitude and frequency have little impact on roll damping derivatives while the smaller amplitude and frequency of oscillation improves the pitch stability. The yaw damping derivative values are fairly small as expected for a tailless configuration. The results indicate that the proposed methodology and test apparatus area valid for estimating the dynamic stability derivatives of a tailless UAV.

The Legal nature of a contract for supply of a special purpose aircraft -The legitimacy of contract cancellation on the grounds that the performance specification is not satisfied in the purchase specification- (특수 항공기 공급계약의 법적 성질 - 구매규격서상 성능요건 미달을 이유로 한 계약해제의 정당성 -)

  • Kwon, Chang-Young
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.31 no.2
    • /
    • pp.37-72
    • /
    • 2016
  • In the aerospace field, besides special purpose airplanes, contracts for supply of various types of products such as prototypes, unmanned aerial vehicles and space launch vehicles are increasing. In the case of the contractor, it was planned to spend a large amount of money to supply the production, but if the purchase specification that presents the quality and performance standard of the product is poor or lacks the capacity to judge the performance, consuming enormous amounts of time and money. Even if the undertaker does not have the ability to supply the products with the required performance and quality to achieve the purpose of the contract, he/she must pay the cost of burial due to the incompleteness of the work and the compensation for the cancellation of the contract. In this case, the defendant ordered the plaintiff to supply the aircraft by the Happy Box method, which is capable of ILS Offset flight as specified in the Purchase Specification, but the plaintiff attempted to supply the aircraft by the RNAV method. Although the ILS ground signal can be inspected by the RNAV method, the aircraft manufactured in the manner claimed by the plaintiff does not have the ILS Offset flight function required by the purchase specification, so the defendant can not achieve the purpose required by the purchase specification. It was a question of whether a defendant's cancellation of contract was legitimate. The aircraft, which is the object of this contract, is a subordinate substitute, so the case contract is of undertaking. Therefore, in order to complete the work in this contract, the major structural parts of the aircraft must be manufactured as agreed and have the performance generally required in the social sense. However, the aircraft delivered by the plaintiff has serious defects because the defendant can not achieve the purpose required by the purchase specification due to the lack of the ILS Offset flight function required by the purchase specification. This deficiency is impossible for the plaintiff to repair, so the defendant 's cancellation of the contract is legitimate.

On-orbit Thermal Analysis for Verification of Thermal Design of 6 U Nano-Satellite with Multiple Payloads (멀티 탑재체를 가진 6 U 초소형위성의 열설계 검증을 위한 궤도 열해석)

  • Kim, Ji-Seok;Kim, Hui-Kyung;Kim, Min-Ki;Kim, Hae-Dong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.6
    • /
    • pp.455-466
    • /
    • 2020
  • In this study, we built a thermal model for SNIPE 6U nano-satellite which has scientific mission for measuring science data in near Earth space environment and described thermal design based on the thermal model. And the validity of the thermal design was verified through the on-orbit thermal analysis. The thermal design was carried out mainly on the passive thermal control techniques such as surface finishes, insulators, and thermal conductors in consideration of the characteristics of the nano-satellite. However, the components with narrow operating temperature range and directly exposed to the orbital thermal environments, such as a battery and thrusters, are accomodated with heaters to satisfy the temperature requirements. On-orbit thermal analysis conditions are based on the basic orbital conditions of the satellite, and thermal analysis was performed for Normal mode, Launch & Early Orbit Phase (LEOP), Safehold mode, and Maneuver mode which are classified by the power consumption and the attitude of the satellite according to the mission scenario. The analysis results for each mode confirmed that every component satisfies the temperature requirement. In addition, the heater capacity and duty cycle of the battery and thruster were calculated through the analysis results of the Safehold mode.