• Title/Summary/Keyword: 항공기 성능

Search Result 787, Processing Time 0.029 seconds

Development and performance evaluation of GPS/PL simulator for UAV landing (무인항공기 착륙용 GPS/PL 시뮬레이터 설계 및 성능 평가)

  • Lee, Geon-Woo;Kim, Yong-Hyun;Choi, Jin-Gyu;Park, Chan-Sik;Lee, Sang-Jeong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.1
    • /
    • pp.39-47
    • /
    • 2008
  • Automatic landing performance of UAV can be enhanced by adding Pseudolite(PL) to GPS. However, it is very hard to install and operate PL with confidence because GPS satellites are moving and the landing zone are usually changeable. The coverage and accuracy of combined GPS and PL can be estimated by using simulator and the correct information is very crucial to UAV operation. In this paper, design, implementation and evaluation of GPS/PL simulator for UAV landing are given. A very realistic coverage estimation is obtained using GIS data and ray launching method with considerations of the transmitter power level, altitude of UAV, number and location of PL. The expected accuracy is estimated using DOP and NSP computed using both GPS and PL. The performance of simulator is evaluated by comparing with the results of a real GPS receiver, and the certified simulator shows the required accuracy for UAV landing can be easily met by proper installation of at least 2 PLs.

Design and Performance Verification of L1 Adaptive Flight Control Law Considering the Change of Center of Gravity for Unmanned Tailless Aircraft (무인 무미익 항공기의 무게중심 변화를 고려한 L1 적응제어 비행제어 법칙 설계 및 성능 검증)

  • Ko, Dong-hyeon;Kang, Ji-soo;Choi, Keeyoung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.2
    • /
    • pp.114-121
    • /
    • 2019
  • Tailless aircraft have advantages of low visibility compared to conventional aircraft, but drawback of poor stability as well which makes designing controller difficult. The controller design is more difficult, especially when the center of gravity moves due to store release or fuel consumption during flight. In this paper, an L1 adaptive controller is proposed as a way to overcome these problems. The reliability and performance of the controllers were verified by non-linear simulations. RPV Flying Quality Design criteria were used for design criteria. Using the simulation, it is shown that the adaptive controller maintains stability of the unmanned aircraft for sudden large change in the inertial properties. It is also shown that the calculation burden can be reduced when it is used with the gain scheduling method.

Model-Reference Adaptive Pitch Attitude Control of Fixed-Wing UAV (고정익 무인 항공기 피치 자세의 모델-참조 적응 제어)

  • Kim, Byung-Wook;Park, Sang-Hyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.7
    • /
    • pp.499-507
    • /
    • 2019
  • Despite the well-known mathematical model of fixed-wing aircraft, there are various studies to meet desired performances by considering the modeling errors in the extended flight envelope. This paper proposes a new adaptation mechanism of model-reference adaptive control, which applies the Levenberg-Marquardt algorithm to the pitch attitude control of fixed-wing UAV. In addition, reference model in the adaptation law is set by referring to the dynamic properties of the plant model. The performance of the proposed adaptive control law is verified through simulations and flight tests.

Neural Network Based Adaptive Control for a Flying-Wing Type UAV with Wing Damage (주익이 손상된 전익형 무인기를 위한 신경회로망 적응제어기법에 관한 연구)

  • Kim, DaeHyuk;Kim, Nakwan;Suk, Jinyoung;Kim, Byungsoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.5
    • /
    • pp.342-349
    • /
    • 2013
  • A damage imposed on an unmanned aerial vehicle changes the flight dynamic characteristics, and makes difficult for a conventional controller based on undamaged dynamics to stabilize the vehicle with damage. This paper presents a neural network based adaptive control method that guarantees stable control performance for an unmanned aerial vehicle even with damage on the main wing. Additionally, Pseudo Control Hedging (PCH) is combined to prevent control performance degradation by actuator characteristics. Asymmetric dynamic equations for an aircraft are chosen to describe motions of a vehicle with damage. Aerodynamic data from wind tunnel test for an undamaged model and a damaged model are used for numerical validation of the proposed control method. The numerical simulation has shown that the proposed control method has robust control performance in the presence of wing damage.

The Study on Optimal Placement and Systematic Performance Measurement Method for Communication/Navigation Antenna of Rotary Wing (회전익 항공기의 통신·항법 안테나 최적 위치설계를 통한 체계성능 측정방법 연구)

  • Sangwan No;Sangyoon Jin;Minsoo Kim;Howon Kang;Seungbeom Ahn
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.4
    • /
    • pp.110-117
    • /
    • 2023
  • In this paper, the optimal placement of the rotary wing's communication and navigation antennas was evaluated by measuring their performance through ground simulations and flight tests. To select the mounting position of the communication and navigation antenna on the helicopter, after considering the shape and characteristics of the airframe, the radiation patterns, coupling analysis, equipment operation profiles, and antenna type analysis were performed for the aircraft-mounted antenna. Based on the analysis results, a procedure for sequentially performing voltage standing wave ratio (VSWR) measurement and antenna pattern test was established through ground and flight tests of the antenna. The systematic performance measurement method and procedure proposed in this paper were verified through ground and flight tests of the Light Armed Helicopter (LAH) system.

Analysis of Wireless Network Technology for High Reliability Aircraft Networks (고 신뢰성 항공기 무선 네트워크 동향 및 기술 분석)

  • Ahn, Seung-Pyo;Kim, Da-Hye;Lee, Jae-Min;Kim, Dong-Seong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.12
    • /
    • pp.1933-1941
    • /
    • 2016
  • This paper compares the performance of wireless communication technologies to replace the wired networks by wireless networks on avionics intra-communication. Due to the drawbacks of wired network, such as complexity, weight, maintenance cost and scalability, it leads to the high data rate and network traffic demands of avionics systems. Therefore, in WAIC(Wireless Avionics Intra-Communications) system suggested by ITU(International Telecommunication Union), based on environment of avionics system and requirements of a wired network, wireless network structures are defined to solve the problems of wired networks. In this paper, we consider features, advantages and disadvantages of wireless communication technologies which can be used for wireless avionics network, and we propose suitable wireless communication technology candidates for wireless avionics networks in WAIC environments.

Improvement of Unexpected Pitch Down Tendency of an Aircraft (항공기 기수 숙임 현상 개선)

  • Kim, Chong-Sup;Kwon, Hui-Man;Koh, Gi-Ok;Han, Kwang-Ho;Lee, Seung-Deok;Hwang, Byung-Moon;Kim, Seong-Jun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.2
    • /
    • pp.162-169
    • /
    • 2011
  • The flight control system utilize RSS(Relaxed Static Stability) criteria in both longitudinal axes to achieve performance enhancements and improve stability. The aircraft using digital flight-by-wire flight control system receives aircraft flight conditions such as pitch, roll and yaw rate, normal acceleration from RSA(Rate Sensor Assembly) and ASA(Acceleration Sensor Assembly). These sensors has permissible measurement error related to system safety of an aircraft but, unexpected flight motions are happened by sensing errors such as offset, noise and etc. The unexpected pitch down tendency occurred by ASA sensor bias in 1g level flight with pilot hands-off. This paper addresses the design and verification of flight control law to improve of pitch down or up tendency caused by ASA sensor bias. The result of analysis and flight test reveals that pitch down tendency can be improved by pitch attitude feedback system.

Analysis of Structural Stability and Optical Performance for Optical Equipment During In-flight Vibration (항공기 진동에 대한 광학 탑재 장비 구조 안정성 및 광학 성능 분석)

  • Jo, Mun Shin;Kim, Sang Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.9
    • /
    • pp.897-904
    • /
    • 2017
  • Optical equipment consists of various components, and a detector is mounted and operated on aircraft, tanks, and warships for target detection and classification. The structural stability and optical performance of aeronautical optical equipment operated at several kilometers of altitude are degraded owing to vibration generated in the aircraft. It is necessary to verify the structural stability and optical performance requirements of the equipment in vibration environment conditions during the design phase. In this study, vibration environment conditions were analyzed using a test standard and the measurements of the vibration generated in aircraft. The conditions were classified as endurance and operating vibration conditions for structural stability and optical performance verification, respectively. The structural stability was verified according to natural frequency analysis, response analysis for the endurance vibration condition, and static analysis. The optical performance was verified by applying the vibration response analysis results to the optical design/analysis program.

Development of Transient Simulation Program for Smart UAV Propulsion System (스마트 무인기 추진기관의 천이 모사 프로그램 개발)

  • Lee, Chang-Ho;Ki, Ja-Young
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.6
    • /
    • pp.63-69
    • /
    • 2011
  • The Smart UAV must have the control characteristics of propulsion system necessary for both rotary aircraft and fixed wing aircraft though it equips turbo-shaft engine. To develop an electronic engine controller in the future, it is necessary to accumulate the experience of engine operation and data of tilt rotor aircraft. For this purpose, the computer programs which predict engine performance in the steady state and transient state can be utilized for the supplementation of flight test data. In this work, we developed a dynamic analysis program using engine performance data gathered during the flight tests. In addition the accuracy of the program was verified through comparison with flight test data and the results of steady-state performance analysis program.

Numerical Study on the Power-on Effect of a Pusher-propeller Aircraft using CFD (CFD를 이용한 추진식 프로펠러 항공기의 Power-on 효과 해석)

  • Cho, Jeong-Hyun;Cho, Jin-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.1
    • /
    • pp.59-66
    • /
    • 2014
  • In the case of a propeller-driven aircraft, power-on effect generated by the propeller has a strong influence on the performance and the stability of an aircraft directly and indirectly. A numerical study on the power-on effect has been performed using the CFD based on the multiple reference frame and sliding mesh model. The power-on effect increases the overall lift and the maximum lift of the aircraft. In addition to lift increment, power-on effect delays the stall of the aircraft. On the other hand, the power-on effect increases the drag significantly and consequently decreases the lift-to-drag ratio of the aircraft. Furthermore, the power-on effect decreases the nose-down pitching moment and consequently decreases the longitudinal static stability of the aircraft. It is expected that the analysis results presented and discussed in this report will be used as an important material for analyzing the aircraft performance and stability and will contribute the development of the propeller-driven aircraft with the pusher propeller.