DOI QR코드

DOI QR Code

Analysis of Wireless Network Technology for High Reliability Aircraft Networks

고 신뢰성 항공기 무선 네트워크 동향 및 기술 분석

  • Ahn, Seung-Pyo (Department of IT Convergence Engineering, Kumoh National Institute of Technology) ;
  • Kim, Da-Hye (Department of Electronic Engineering, Kumoh National Institute of Technology) ;
  • Lee, Jae-Min (ICT Convergence Research Center, Kumoh National Institute of Technology) ;
  • Kim, Dong-Seong (Department of Electronic Engineering, Kumoh National Institute of Technology)
  • Received : 2016.08.31
  • Accepted : 2016.12.07
  • Published : 2016.12.31

Abstract

This paper compares the performance of wireless communication technologies to replace the wired networks by wireless networks on avionics intra-communication. Due to the drawbacks of wired network, such as complexity, weight, maintenance cost and scalability, it leads to the high data rate and network traffic demands of avionics systems. Therefore, in WAIC(Wireless Avionics Intra-Communications) system suggested by ITU(International Telecommunication Union), based on environment of avionics system and requirements of a wired network, wireless network structures are defined to solve the problems of wired networks. In this paper, we consider features, advantages and disadvantages of wireless communication technologies which can be used for wireless avionics network, and we propose suitable wireless communication technology candidates for wireless avionics networks in WAIC environments.

본 논문에서는 항공기의 내부 네트워크를 유선에서 무선으로 대체하기 위해 무선 통신망 기술들의 성능을 비교한다. 기존 항공기의 유선 네트워크가 가지는 다양한 장비와 센서의 복잡한 구조에 따른 무게증가 그리고 유지보수 문제 및 비용 등의 단점과, 차세대 항공기 네트워크에서 요구되는 통신 속도 및 통신량 등의 성능적인 측면에 대한 요구사항이 증가하고 있다. 국제전기통신연합(ITU)에서 제안한 WAIC(Wireless Avionics Intra-Communications)는 기존 유선 항공기 네트워크의 요구사항을 기반으로 항공기 내/외부 환경 등을 고려한 무선네트워크 구조를 정의했다. 본 논문에서는 WAIC에서는 제안한 무선네트워크 구조에 적용할 수 있는 무선 통신망 기술들의 특징과 장단점을 고려한다. 또한 항공기 무선네트워크에 적용 가능한 무선 통신망 기술들을 비교 분석하여 WAIC에서 제안한 무선 항공기 토폴로지 환경 구조에 적합한 무선 통신망 기술 후보군을 알아본다.

Keywords

References

  1. D.-S. Kim, "Embeded system based on network," Korean Studies Information, pp. 22-167, 2012.
  2. D.-S. Kim, Military/Industrial Convergence Real-time Networks, Haksan media, pp. 18-189, 2014.
  3. D.-K. Dang, A. Mifdaoui, T. Gayraud, "Design and analysis of UWB-based network for reliable and timely communications in safety-critical avionics," in Proc. IEEE WFCS, pp. 1-10, Toulouse, France, May 2014.
  4. Report ITU-R M.2197, Technical characteristics and operational objectives of wireless avionics intra-communications (WAIC), Nov. 2010.
  5. Report ITU-R M.2283-0, Technical characteristics and spectrum requirements of wireless avionics intra-communications systems to support their safe operation, Nov. 2013.
  6. Report ITU-R M.2319-0, Compatibility analysis between wireless avionic intra-communication systems and systems in the existing services in the frequency band 4 200-4 400 MHz, Nov. 2014.
  7. Andrew Swartza, et al., "Hybrid wireless hull monitoring system for naval combat vessels," Structure and Infrastructure Eng., vol. 8, no. 7, pp. 621-638, 2012. https://doi.org/10.1080/15732479.2010.495398
  8. Dinh-Khanh Dang, A. Mifdaoui, and T. Gayraud "Fly-by-wireless for next generation aircraft: Challenges and potential solutions," 2012 IFIP Wireless days, pp. 21-23, Dublin, Ireland, Nov. 2012.
  9. A. Basu, et al., "Verification of an AFDX infrastructure using simulations and probabilities," Runtime Verification, pp. 330-344, St. Julians, Malta, Nov. 2010.
  10. IEEE Computer Society, P802.11- Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, 2010.
  11. F. Leipold, D. Tassetto, and S. Bovelli, "Wireless in-cabin communication for aircraft infrastructure," Telecommun. Syst., vol. 52, no. 2, pp. 1211-1232, Feb. 2013. https://doi.org/10.1007/s11235-011-9636-8
  12. IEEE Computer Society, IEEE std 802.15.3: Wireless Medium Access Control(MAC) and Physical Layer(PHY) Specifications for High Rate Wireless Personal Area Networks (WPANs), 2003.
  13. ECMA International, Standard ECMA-368, 3rd Ed., Dec. 2008.
  14. IEEE Computer Society, IEEE std 802.15.3c: Wireless Medium Access Control(MAC) and Physical Layer(PHY) Specifications for High Rate Wireless Personal Area Networks (WPANs), 2009.
  15. S. N. Kelkar, "A survey and performance analysis of IEEE802.11ac wifi networking," Int. J. Comput. Sci. and Inf. Technol. Res., vol. 3, no. 2, pp. 808-814, Apr. 2015.
  16. X. S. Shen, et al., "Medium access control in ultra-wideband wireless networks," IEEE Trans. Veh. Technol., vol. 54, no. 5, pp. 1678-1683, Sept. 2005. https://doi.org/10.1109/TVT.2005.853467
  17. S. Bali, et al., "Performance of three routing protocols in UWB ad hoc network deployed in an industrial application," 2007 IEEE Globecom Wkshp., pp. 1-9, Washington, DC, USA, Nov. 2007.
  18. M. S. I. M. Zin, et al., "A review of UWB MAC protocols," AICT 2010, pp. 526-534, Barcelona, Spain, May 2010.
  19. S. Kim, "IEEE 802.15 WPAN standard trend," J. KICS, vol. 32, no. 3, pp. 85-93, Feb. 2015.
  20. D. T. Nguyen, et al., "A hybrid TDMA protocol based ultra-wide band for in-car wireless communication," 2009 IEEE Region 10 Conf.(TENCON 2009), pp 1-7, Singapore, Jan. 2009.
  21. M. Cho, et al., "Link performance analysis for intra-aircraft wireless communications in 4.4GHz," J. KICS, vol. 20, no. 7, pp. 1243-1246, Jul. 2016.
  22. T. Yang, et al., "Reliable real-time data dissemination protocol in wireless sensor networks," J. KICS, vol. 40, no. 8, pp. 1567-1576, Aug. 2015. https://doi.org/10.7840/kics.2015.40.8.1567