• Title/Summary/Keyword: 합체

Search Result 1,402, Processing Time 0.024 seconds

Enhancement of CO2 permeance by incorporating CaCO3 in Mixed Matrix Membranes (CaCO3을 이용한 혼합매질분리막의 이산화탄소 투과도 향상)

  • Park, Cheol Hun;Jung, Jung Pyo;Lee, Jae Hun;Kim, Jong Hak
    • Membrane Journal
    • /
    • v.28 no.1
    • /
    • pp.55-61
    • /
    • 2018
  • With vigorous development of petroleum and chemical industry, emission of carbon dioxide has attracted tremendous attention globally due to global warming problem and abnormal climate change. To address these problems, in this study, a PEGBEM-g-POEM graft copolymer with high $CO_2$ affinity was synthesized and $CaCO_3$ was incorporated to form mixed matrix membranes (MMMs) for enhancement of $CO_2$ permeance. By varying the addition weight of $CaCO_3$ in MMMs, high separation performance of $CO_2$ over $N_2$ was obtained. At 50 wt% loading of $CaCO_3$, the greatest separation performance was obtained with an enhanced $CO_2$ permeance from 22.5 to 28.16 GPU and slightly increased $CO_2/N_2$ selectivity from 44.7 to 45.42. It resulted from the increased $CO_2$ solubility of MMMs due to specific interaction between $CaCO_3$ and $CO_2$ molecules. Upon excess loading of $CaCO_3$, MMMs exhibited loss of $CO_2$ separation performance due to the formation of interfacial defects. Based on this result, it is considered that the proper addition of $CaCO_3$ is crucial for improvement of $CO_2$ separation performance.

A Study on the Microstructure and Properties of Y-BA-Cu-O/Ag composite High $T_{c}$ Superconductor prepared by Sinter-forging Process (Sinter forging으로 제조한 Y-BA-Cu-O/Ag 고온 초전도 복합체의 미세조직과 특성)

  • Park, Jong-Hyeon;Kim, Byeong-Cheol;Song, Jin-Tae
    • Korean Journal of Materials Research
    • /
    • v.4 no.1
    • /
    • pp.37-43
    • /
    • 1994
  • Y-Ra-Cu-0 oxide superconductors were fabricated by the sinter-forging method to make the critical current density improve through controlling of microstructure and crystal texture. The grain alignment of oxide superconductor was formed by the sinter-forging process and it's c-axis orientation was parallel to the press direction.The orientation factor of texture increased with sinking temperature and pressure, and also grain alignment was improved by the addition of Ag. As for the sinterforged Y-Ba-Cu-O/Ag sample, the $T_c$(on-set) was not almost varied with the sinter-forging temperature, but $T_c\;^{zero}$ decreased more or less at high sinter-forging temperatures. In addition, it was observed that added-Ag was mainly distributed along the grain boundar~es in the (123) matrix, resulting in the densification of microstructure. From these results, i t was thought that the improvement of $J_c$ over 2000A/$\textrm{cm}^2$ was attributed to the texture, densification of microstructure, and (123) grain growth due to the Ag addition.

  • PDF

Preparation and Release Behavior of Albumin-Loaded PLGA Scaffold by Ice Particle Leaching Method (얼음입자추출법을 이용한 알부민 함유 PLGA 담체의 제조 및 방출 거동)

  • Hong Keum Duck;Seo Kwang Su;Kim Soon Hee;Kim Sun Kyung;Khang Gilson;Shin Hyung Sik;Kim Moon Suk;Lee Hai Bang
    • Polymer(Korea)
    • /
    • v.29 no.3
    • /
    • pp.282-287
    • /
    • 2005
  • A novel ice particle leaching method for fabrication of porous and biodegradable PLGA scaffold has been proposed for the application to tissue engineering. After uniform mixing of poly(L-lactide-co-glycolide) (PLGA) and bovine serum albumin-fluorescein isothiocyanate (FITC-BSA), the FITC-BSA loaded scaffold was fabricated by adding various ratio of ice particle. The release profiles of FITC-BSA were examined using pH 7.4 PBS for 28 days at $37^{circ}$. The release amount was determined by fluorescence intensity by using the fluorescence spectrophotometer and the morphological change of the scaffolds was observed by scanning electron microscope. The release initial burst of BSA containing scaffolds was lower than that of simple dipping scaffolds resulting in constant release aspect. Although the BSA concentration increased. the initial burst was not increased. As a result of this study, it can be suggested that ice particle leaching method for the tissue engineered scaffold miff be very useful and it is possible to impregnate with water soluble factors like cytokine. We suggest that ice particle leaching method may be useful to tissue engineered organ regeneration.

Preparation and Characterization of Ipriflavone-Loaded Poly(L-lactide-co-glycolide) Scaffold for Tissue Engineered Bone (조직공학적 골을 위한 애프리플라본을 함유한 다공성 지지체의 제조 및 그 특성)

  • Jang, Ji-Wook;Lee, Bong;Han, Chang-Whan;Lee, Il-Woo;Lee, Hai-Bang;Khang, Gil-Son
    • Polymer(Korea)
    • /
    • v.27 no.3
    • /
    • pp.226-234
    • /
    • 2003
  • Ipriflavone (IP), a non-hormonal isoflavone derivative, has been shown to interfere with bone remodeling by inhibiting bone resorption and stimulating bone formation. IP consistently increased the amount of Ca incorporated into the cell layer by mesenchymal stem cells (MSCs). In this study, we developed the novel IP loaded poly(L-lactide-co-glycolide) (PLGA) scaffolds for the possibility of the application of the tissue engineered bone. IP/PLGA scaffo1ds were prepared by solvent casting/salt leaching method and were characterized by porosimeter, scanning electron microscopy, determination of residual salt amount, differential scanning calorimetry, and X-ray diffractometer, respectively. IP/PLGA scaffolds were implanted into the back of athymic nude mouse to observe the effect of IP on the osteoinduction compared with control PLGA scaffo1ds. Thin sections were cut from paraffin embedded tissues and histological sections were stained H&E, von Kossa, and immunohistochemical staining for Type I collagen and osteocalcin. It can be observed that the porosity was above 91.7% and the pore size was above 101 $\mu\textrm{m}$. Control scaffo1d and IP/PLGA scaffo1ds of 50% IP were implanted on the back of athymic nude mouse to observe the effect of IP on the induction of cells proliferation for 9 weeks. The evidence of calcification, osteoblast, and osteoid from the undifferentiated stem cells in the subcutaneous sites and other soft connective tissue sites having a preponderance of stem cells has been observed. From these results, it seems that IP plays an important role for bone induction in IP/PLCA scaffolds.

Preparation and Characterization of Biodegradable Hydrogels for Tissue Expander Application (조직 확장기용 생분해성 하이드로젤의 제조 및 특성분석)

  • Yuk, Kun-Young;Kim, Ye-Tae;Im, Su-Jin;Garner, John;Fu, Yourong;Park, Ki-Nam;Park, Jeong-Sook;Huh, Kang-Moo
    • Polymer(Korea)
    • /
    • v.34 no.3
    • /
    • pp.253-260
    • /
    • 2010
  • In this study, we prepared and evaluated a series of biocompatible and biodegradable block copolymer hydrogels with a delayed swelling property for tissue expander application. The hydrogels were synthesized via a radical crosslinking reaction of poly(ethylene glycol) (PEG) diacrylate and poly(D,L-lactide-co-glycolide)-poly(ethylene glycol)-poly(D,L-lactide-co-glycolide)(PLGA-PEG-PLGA) triblock copolymer diacrylate as a swelling/degradation controller (SDC). For the synthesis of various SDCs that can lead to different degradation and swelling properties, various PLGA-PEG-PLGA triblock copolymers with different LA/GA ratios and different PLGA block lengths were synthesized and modified to have terminal acrylate groups. The resultant hydrogels were flexible and elastic even in the dry state. The in vitro degradation tests showed that the delayed swelling properties of the hydrogels could be modulated by varying the chemical composition of the biodegradable crosslinker (SDC) and the block ratio of SDC/PEG. The histopathologic observation after implantation of hydrogels in mice was performed and evaluated by macrography and microscopy. Any significant inflammation or necrosis was not observed in the implanted tissues. Due to their biocompatibility, elasticity, sufficient swelling pressure, delayed swelling and controllable degradability, the hydrogels could be useful for tissue expansion and other biomedical applications.

Preparation and Characterization of PEG-PLA(PLGA) Micelles for Solubilization of Rosiglitazone (Rosiglitazone 가용화를 위한 PEG-PLA(PLGA) 고분자 미셀의 제조 및 특성분석)

  • Kim, Yon-Hwan;Im, Jeong-Hyuk;Min, Hyun-Su;Kim, Jun-Ki;Lee, Yong-Kyu;Park, Go-Eun;Cho, Kwang-Jae;Huh, Kang-Moo
    • Polymer(Korea)
    • /
    • v.34 no.3
    • /
    • pp.274-281
    • /
    • 2010
  • In this study, PEG-PLA(or PLGA) amphiphilic di-block copolymers were synthesized by ring opening polymerization of D,L-lactide(or glycolide) and applied to polymeric micelle system for solubilization of a rosiglitazone as diabetes drug. The drug could be efficiently loaded into the polymer micelle by solid dispersion technique, and the drug-loaded micelles were characterized and evaluated as a drug delivery carrier by fluorescence spectrometer, DSC, and DLS measurements. The colloidal stability of drug loaded micelles in aqueous media could be enhanced by addition of 2-hydroxy-N-picolylnitinamide as a hydrotropic agent. The polymer micelles also showed biocompatible and nontoxic properties in vitro cell viability using MTT assay, and the drug loaded micelles were observed to be more effective than free drug for decreasing glucose in blood of rats.

Preparation of IPN-type Polyelectrolyte Films Attached to the Electrode Surface and Their Humidity-Sensitive Properties (전극 표면에 부착된 IPN 형태의 전해질 고분자의 제조 및 그들의 감습특성)

  • Han, Dae-Sang;Gong, Myoung-Seon
    • Polymer(Korea)
    • /
    • v.34 no.6
    • /
    • pp.565-573
    • /
    • 2010
  • Copoly(2-(dimethylamino)ethyl methacrylate)(DAEMA)/butyl acrylate (BA) and copoly(methyl methacrylate)(MMA)/BA/2-(cinnamoyloxy)ethyl methacryate (CEMA), which were cross-linked with dibromoalkane and UV irradiation, respectively, were prepared for the precursors of interpenetrating polymer network (IPN) humidity-sensitive films. 3-(Triethoxysilyl)propyl cinnamate (TESPC) was used as a surface-pretreating agent for the attachment of IPN-polyelectrolyte to the electrode surface by UV irradiation. Humidity sensitive polymeric thin films with an IPN structure were prepared by crosslinking reactions of copoly(DAEMA/BA) with 1,4-dibromobutane (DBB) and copoly(MMA/BA/CEMA) by UV-irradiation. The anchoring of an IPN-polyelectrolyte into the substrate was carried out via the photochemical $[2{\pi}+2{\pi}]$ cycloaddition. The resulting humidity sensors showed a high sensitivity in the range of 20~95%RH and a small hysteresis (<1.5%RH). The response time for adsorption and desorption process at 33~94%RH was 48 and 65 s, respectively, indicating a fast response. The effects of the concentration of copolymers, molar ratio of crosslinking agents and time of the precursor solution for dip-coating on their humidity sensitive properties including water durability were investigated.

Developing a water discharge anchor & trap bolt to prevent basic salt from penetrating to harbor structures (해수 염기 침투방지를 위한 항만구조물 보수보강용 물배출 앵커 및 트랩볼트 개발에 관한 연구)

  • Ock, Jong-Ho;Moon, Sang-Deok;Lee, Hwa-Sun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.535-541
    • /
    • 2018
  • Most construction methods for the repair and reinforcement of old reinforced concrete harbor structures involve a process of applying a fiber complex or fiber complex panel just like wallpaper to the bottom of structures, such as slabs or beams. On the other hand, these techniques result in the sealing of repaired and reinforced portions of the structures by the fiber products, preventing moisture, such as rainwater entering the structures through the upper surfaces of the slabs or beams from being released, and causing the entire concrete covering of the structures to be peeled off in the long run. To prevent this, it is necessary to develop a technique to protect the basic salt from the sea water from penetrating into the structures while expelling the water absorbed in the structures swiftly. This study attempted to solve the problem by modifying the anchor bolts currently used to repair and reinforce the port structure. That is, by drilling holes into the body of anchor bolts and modifying the caps of the bolts to produce a structure that would let the water flow like a toilet trap, the moisture inside of the structure could be drained through the holes in the anchor bolts. The water discharge anchor bolts developed were tested and observed for 6 months; the water was discharged in 73% of the anchors (200 anchor installation, 145 anchors).

Technology Trends of Cathode Active Materials for Lithium Ion Battery (리튬이온 배터리용 정극재료(正極材料)의 기술동향(技術動向))

  • Hwang, Young-Gil;Kil, Sang-Cheol;Kim, Jong-Heon
    • Resources Recycling
    • /
    • v.21 no.5
    • /
    • pp.79-87
    • /
    • 2012
  • With the increasing size and universalization of lithium-ion batteries, the development of cathode materials has emerged as a critical issue. The energy density of 18650 cylindrical batteries had more than doubled from 230 Wh/l in 1991 to 500 Wh/l in 2005. The energy capacity of most products ranges from 450 to 500Wh/l or from 150 to 190 Wh/kg. Product developments are focusing on high capacity, safety, saved production cost, and long life. As Co is expensive among the cathode active materials $LiCoO_2$, to increase energy capacity while decreasing the use of Co, composites such as $LiMn_2O_4$, $LiCo_{1/3}N_{i1/3}Mn_{1/3}O_2$, $LiNi_{0.8}Co_{0.15}Al_{0.05}O_2$, and $LiFePO_4$-C (167 mA/g) are being developed. Furthermore, many studies are being conducted to improve the performance of battery materials to meet the requirement of large capacity output density such as 500Wh/kg for electric bicycles, 1,500Wh/kg for electric tools, and 4,000~5,000Wh/kg for EV and PHEV. As new cathodes active materials with high energy capacity such as graphene-sulfur composite cathode materials with 600 Ah/kg and the molecular cluster for secondary battery with 320 Ah/kg are being developed these days, their commercializations are highly anticipated.

Overview of Zirconium Production and Recycling Technology (지르코늄의 제조(製造)와 재활용기술(再活用技術))

  • Park, Kyoung-Tae;Kim, Seung-Hyun;Hong, Soon-Ik;Choi, Mi-Sun;Cho, Nam-Chan;Yoo, Hwan-Jun;Lee, Jong-Hyeon
    • Resources Recycling
    • /
    • v.21 no.5
    • /
    • pp.18-30
    • /
    • 2012
  • Zirconium is one of the most important material used as cladding of fuel rods in nuclear reactors because of its high dimensional stability, good corrosion resistance and especially low neutron-absorbing cross section. However, Hf free nuclear grade Zr sponge is commercially produced by only three countries including USA, France and Russia. So, Zr has been thoroughly managed as a national strategic material in Korea. Most of the zirconium is used for Korean nuclear industry as nuclear fuel cladding materials manufactured from Hf free Zr alloy raw material. Also, there are some other applications such as alloying element and detonator. In this review, zirconium production and recycling technologies have been reviewed and current industrial status was also analyzed. And recent achievements in innovative reduction technologies such as electrolytic reduction process and molten oxide electrolysis were also introduced.