• Title/Summary/Keyword: 합성 제어

Search Result 999, Processing Time 0.021 seconds

Adaptive Fuzzy Sliding Mode Control for Nonlinear Systems without Parameter Projection Method (파라미터 투영 기법이 필요 없는 비선형 시스템의 적응 퍼지 슬라이딩 모드 제어)

  • Seo, Sam-Jun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.4
    • /
    • pp.499-505
    • /
    • 2011
  • In this paper, we proposed an adaptive fuzzy sliding mode control for nonlinear systems without parameter projection method. By modifying the controller structure, the parameters of the estimated input gain function are guaranteed not being identically zero and it is shown that the control scheme will not cause any implementation problem even if the estimated value of input gain function is zero at any moment during on-line operations. Except for the input gain function which an approximate estimate for its lower bound is needed, the proposed control scheme does not assume a priori the exact values of the bounding parameters. Based on Lyapunov synthesis methods, the overall control system guarantees that the tracking error asymptotically converges to zero and that all signals involved in controller are uniformly bounded. This can be illustrated by the simulation results for an inverted pendulum system.

FSM Designs with Control Flow Intensive Cycle-C Descriptions (Cycle-C를 이용한 제어흐름 중심의 FSM 설계)

  • Yun Chang-Ryul;Jhang Kyoung-Son
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.11 no.1
    • /
    • pp.26-35
    • /
    • 2005
  • Generally, we employ FSMs for the design of controllers in digital systems. FSMs are Implemented with state diagrams generated from control flow. With HDL, we design and verify FSMs based on state diagrams. As the number of states in the system increases, the verification or modification processes become complicated, error prone and time consuming. In this paper, we propose a control flow oriented hardware description language at the register transfer level called Cycle-C. Cycle-C describes FSMs with timing information and control How intensive algorithms. The Cycle-C description is automatically converted into FSMs in the form of synthesizable RTL VHDL. In experiments, we design FSMs for control intensive interface circuits. There is little area difference between Cycle-C design and manual design. In addition, Cycle-C design needs only 10~50% of the number lines of manual RTL VHDL designs.

Design and Pressure Loss Evaluation of Vacuum Brazed Cooling Passage for Full Authority Digital Engine Control (항공기용 엔진제어기의 진공 브레이징 냉각유로 설계 및 압력손실 평가)

  • Han, Myeongjae;Seol, Jinwoon;Jeong, Seungho;Cha, Minkyung;Jang, Hoyoun;Kim, Junghoe
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.2
    • /
    • pp.72-78
    • /
    • 2022
  • A vacuum brazed cooling passage for an aircraft engine controller was designed. In order to predict the total pressure loss, which is the main design factor of the cooling passage, theoretical and numerical methods for the major loss and the minor loss considering the overall shape of the cooling passage are presented. This design and evaluation method can predict the pressure loss of the complex cooling passage shape for various flow conditions at the initial design step.

Implementation of the Digital Current Control System for an Induction Motor Using FPGA (FPGA를 이용한 유도 전동기의 디지털 전류 제어 시스템 구현)

  • Yang, Oh
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.11
    • /
    • pp.21-30
    • /
    • 1998
  • In this paper, a digital current control system using a FPGA(Field Programmable Gate Array) was implemented, and the system was applied to an induction motor widely used as an industrial driving machine. The FPGA designed by VHDL(VHSIC Hardware Description Language) consists of a PWM(Pulse Width Modulation) generation block, a PWM protection block, a speed measuring block, a watch dog timer block, an interrupt control block, a decoder logic block, a wait control block and digital input and output blocks respectively. Dedicated clock inputs on the FPGA were used for high-speed execution, and an up-down counter and a latch block were designed in parallel, in order that the triangle wave could be operated at 40 MHz clock. When triangle wave is compared with many registers respectively, gate delay occurs from excessive fan-outs. To reduce the delay, two triangle wave registers were implemented in parallel. Amplitude and frequency of the triangle wave, and dead time of PWM could be changed by software. This FPGA was synthesized by pASIC 2SpDE and Synplify-Lite synthesis tool of Quick Logic company. The final simulation for worst cases was successfully performed under a Verilog HDL simulation environment. And the FPGA programmed for an 84 pin PLCC package was applied to digital current control system for 3-phase induction motor. The digital current control system of the 3 phase induction motor was configured using the DSP(TMS320C31-40 MHz), FPGA, A/D converter and Hall CT etc., and experimental results showed the effectiveness of the digital current control system.

  • PDF

Thermoelectric properties of SiC prepared by refined diatomite (정제 규조토로 합성한 탄화규소의 열전특성)

  • Pai, Chul-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.4
    • /
    • pp.596-601
    • /
    • 2020
  • Silicon carbide is considered a potentially useful material for high-temperature electronic devices because of its large band gap energy and p-type or n-type conduction that can be controlled by impurity doping. Accordingly, the thermoelectric properties of -SiC powder prepared by refined diatomite were investigated for high value-added applications of natural diatomite. -SiC powder was synthesized by a carbothermal reduction of the SiO2 in refined diatomite using carbon black. An acid-treatment process was then performed to eliminate the remaining impurities (Fe, Ca, etc.). n-Type semiconductors were fabricated by sintering the pressed powder at 2000℃ for 1~5h in an N2 atmosphere. The electrical conductivity increased with increasing sintering time, which might be due to an increase in carrier concentration and improvement in grain-to-grain connectivity. The carrier compensation effect caused by the remaining acceptor impurities (Al, etc.) in the obtained -SiC had a deleterious influence on the electrical conductivity. The absolute value of the Seebeck coefficient increased with increasing sintering time, which might be due to a decrease in the stacking fault density accompanied by grain or crystallite growth. On the other hand, the power factor, which reflects the thermoelectric conversion efficiency of the present work, was slightly lower than that of the porous SiC semiconductors fabricated by conventional high-purity -SiC powder, it can be stated that the thermoelectric properties could be improved further by precise control of an acid-treatment process.

A Study on Applicability to Dual-Fuel Engine of Low Caloric Gas (저발열량 가스의 혼소엔진 적용에 관한 연구)

  • Park, Cheol-Woong;Lee, Sun-Youp;Kim, Chang-Gi;Won, Sang-Yeon;Lee, Jang-Hee
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.1
    • /
    • pp.15-20
    • /
    • 2010
  • The interest on the utilization of landfill gases and biogases for energy production has been increasing due to environment concerns and global warming caused by burning fossil fuels, renewable nature of these gases. Using those synthesis gases to generate energy with engine encourages more efficient collection reducing emissions into the atmosphere and generates revenues for the operators. However the lower calorific value of synthesis gases than that of LPG or CNG affects the combustion stability and power output. Thus it becomes necessary to address disadvantages involved by studying synthesis gases in technological perspective. This paper discussed synthesis gas as a fuel for 60kW dual-fuel engine to produce power in an effective way. The methane diluted with $N_2$ was used as a fuel and developed ECU and injector driver facilitated the investigations with diesel fuel.

The synthesis of ultrathin Nb-doped TiOx nanosheets (초박막 두께의 Nb-TiOx 나노시트 합성)

  • Lee, Sang Eun;Seo, Jun;Park, Hee Jung
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.5
    • /
    • pp.194-199
    • /
    • 2020
  • By controlling the composition of the metal-oxide nanosheet having a two-dimensional layered crystal structure, material properties and application can be extended. In this study, the composition of the nanosheet could be expanded from pure composition to doping composition by successfully synthesizing the TiO2 nanosheet doped with Nb. Specifically, the doping composition was designed when synthesizing the layered metal oxide as a starting material (K0.8Ti1.73-xNbxLi0.27O4, x = 0, 0.03, 0.07) and chemical exfoliation was performed. By doing this, it was possible to obtain the Nb-doped TiOy ultrathin nanosheet. The size of the nano sheet was 2 ㎛ or less based on the long length in the x-y direction, and the thickness was about 1 nm. Nb-doping was confirmed by XRD and SEM-EDS analysis.

Synthesis of Concentrated Silver Nano Sol for Ink-Jet Method (잉크젯용 고농도 은 나노 졸 합성)

  • Park, Han-Sung;Seo, Dong-Soo;Choi, Youngmin;Chang, Hyunjoo;Kong, Ki-Jeong;Lee, Jung-O;Ryu, Beyong-Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.9
    • /
    • pp.670-676
    • /
    • 2004
  • The synthesis of highly concentrated silver nano sol assisted by polymeric dispersant (polyelectrolytes) for inkjet method was studied. The silver nano sol was prepared with AgNO$_3$, polyelectrolytes (HS5468cf ; polyacrylic ammonium salt), and reducing agent. The polyelectrolytes play an important role in formation of complex composed of Ag$\^$+/ion and carboxyl group (COO$\^$-/), result in preparation of highly dispersed silver nano particles. The optimization of added amount of polyelectrolytes, and concentration of silver nano sol was studied. The silver nanoparticles were evaluated by XRD, particle size/zeta potential analyzer and FE-TEM. The silver nanoparticles with the range of 10 nm in diameter were produced. The concentration of batch-synthesized silver nano sol was possible up to 40 wt%.

Synthesis of Manganese Hydrogen Phosphate Hydrate by Controlled Double-jet Precipitation (더블제트 침전법에 의한 제이인산망간염 수화물의 새로운 합성 방법)

  • Kim, Won-Seok;Kang, Yong;Kim, Yeong-Cheol
    • Applied Chemistry for Engineering
    • /
    • v.19 no.1
    • /
    • pp.66-72
    • /
    • 2008
  • Manganese hydrogen phosphate hydrate, $MnHPO_4{\cdot}2.25H_2O$, is a major constituent of the pre-conditioning compositions for the manganese phosphate coating treatment over carbon steel substrate. This compound is conventionally produced by the synthesis in the aqueous solution process followed by the filtration and drying processes and a series of size reduction and classification processes in dry state. However, it is evident that the conventional process is neither environment-friendly nor cost-effective. In this work, a new process principle was examined based on the controlled double-jet precipitation technology to produce the manganese chemical product of fairly uniform particle size distribution in an aqueous solution media. The effects of stabilizing agents were comparatively studied by the scanning electron microscope analysis in a uniformity point of view of the resulting particle size. Polyvinylpyrrolidone and Gum Arabic were excellent in controlling the crystal growth step, resulting in fairly uniform size distributions of the particles from the controlled double-jet process.

The Synthesis of CdTe Nanowires Based on Stabilizers with Low Concentrations (저비율의 안정제를 이용한 CdTe 나노선 합성)

  • Kim, Ki-Sub;Kang, Jeong Won
    • Korean Chemical Engineering Research
    • /
    • v.53 no.6
    • /
    • pp.798-801
    • /
    • 2015
  • Nanomaterials (NMs) based on cadmium telluride (CdTe) are the theme of numerous research areas due to their unique chemical and physical properties. NM synthesis via a size-controlled procedure has become an intriguing research topic because NMs exhibit novel optical and physical properties depending on their size and shape. In this study, we prepared CdTe nanowires (NWs) via self-assembly from individual Nanoparticles (NPs). Thioglycolic acid (TGA)-to-Cd ion ratio of 1.3 was used instead of the traditional value of 2.4 and the reduced amount of stabilizer resulted in reorganization from individual NPs into NWs consisting of multi-layers of individual NPs. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) were performed to characterize NWs. The produced nanowires were straight and long in shape and their length ranged from 500 nm to tens of micrometers.