• Title/Summary/Keyword: 합성 곱 신경망

Search Result 540, Processing Time 0.034 seconds

Artificial neural network for classifying with epilepsy MEG data (뇌전증 환자의 MEG 데이터에 대한 분류를 위한 인공신경망 적용 연구)

  • Yujin Han;Junsik Kim;Jaehee Kim
    • The Korean Journal of Applied Statistics
    • /
    • v.37 no.2
    • /
    • pp.139-155
    • /
    • 2024
  • This study performed a multi-classification task to classify mesial temporal lobe epilepsy with left hippocampal sclerosis patients (left mTLE), mesial temporal lobe epilepsy with right hippocampal sclerosis (right mTLE), and healthy controls (HC) using magnetoencephalography (MEG) data. We applied various artificial neural networks and compared the results. As a result of modeling with convolutional neural networks (CNN), recurrent neural networks (RNN), and graph neural networks (GNN), the average k-fold accuracy was excellent in the order of CNN-based model, GNN-based model, and RNN-based model. The wall time was excellent in the order of RNN-based model, GNN-based model, and CNN-based model. The graph neural network, which shows good figures in accuracy, performance, and time, and has excellent scalability of network data, is the most suitable model for brain research in the future.

Performance comparison of lung sound classification using various convolutional neural networks (다양한 합성곱 신경망 방식을 이용한 폐음 분류 방식의 성능 비교)

  • Kim, Gee Yeun;Kim, Hyoung-Gook
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.5
    • /
    • pp.568-573
    • /
    • 2019
  • In the diagnosis of pulmonary diseases, auscultation technique is simpler than the other methods, and lung sounds can be used for predicting the types of pulmonary diseases as well as identifying patients with pulmonary diseases. Therefore, in this paper, we identify patients with pulmonary diseases and classify lung sounds according to their sound characteristics using various convolutional neural networks, and compare the classification performance of each neural network method. First, lung sounds over affected areas of the chest with pulmonary diseases are collected by using a single-channel lung sound recording device, and spectral features are extracted from the collected sounds in time domain and applied to each neural network. As classification methods, we use general, parallel, and residual convolutional neural network, and compare lung sound classification performance of each neural network through experiments.

Bio-signal Data Augumentation Technique for CNN based Human Activity Recognition (CNN 기반 인간 동작 인식을 위한 생체신호 데이터의 증강 기법)

  • Gerelbat BatGerel;Chun-Ki Kwon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.24 no.2
    • /
    • pp.90-96
    • /
    • 2023
  • Securing large amounts of training data in deep learning neural networks, including convolutional neural networks, is of importance for avoiding overfitting phenomenon or for the excellent performance. However, securing labeled training data in deep learning neural networks is very limited in reality. To overcome this, several augmentation methods have been proposed in the literature to generate an additional large amount of training data through transformation or manipulation of the already acquired traing data. However, unlike training data such as images and texts, it is barely to find an augmentation method in the literature that additionally generates bio-signal training data for convolutional neural network based human activity recognition. Thus, this study proposes a simple but effective augmentation method of bio-signal training data for convolutional neural network based human activity recognition. The usefulness of the proposed augmentation method is validated by showing that human activity is recognized with high accuracy by convolutional neural network trained with its augmented bio-signal training data.

CNN 을 이용한 단일영상 고해상도 복원 및 수용영역 확장을 통한 성능 향상

  • Park, Karam;Cho, Nam Ik
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2019.11a
    • /
    • pp.76-79
    • /
    • 2019
  • 합성곱 신경망의 성능이 증가하면서 다양한 영상 처리 문제를 해결하기 위해 합성곱 신경망을 적용한 시도들이 증가하고 있다. 고해상도 복원 문제도 그 중 하나였으며, 보다 높은 성능을 얻기 위해 주로 신경망의 깊이를 깊게 하는 시도들이 있었다. 본 논문에서는 고해상도 복원 작업을 위한 합성곱 신경망의 성능 향상을 위해 깊이를 증가시키는 접근법이 아닌 수용영역을 확장시키는 접근법을 시도하였다. 논문에서 제시한 모델은 신경망 내부에 두 개의 브랜치를 두어, 하나의 브랜치는 Dilated Convolution 을 이용해 수용영역을 확장하는데 사용되며, 다른 하나는 이 브랜치를 통해 나온 feature 를 가공하는데 사용된다. 기본 모델은 EDSR 을 사용하였으며, 최종적으로 4.79M 의 파라미터로 평균 32.46dB 의 PSNR 을 보여주었다. 하지만 모델의 구조가 복잡하여 깊이를 늘이는 접근법을 적용하기 어렵다는 한계점이 있다.

  • PDF

Architectures of Convolutional Neural Networks for the Prediction of Protein Secondary Structures (단백질 이차 구조 예측을 위한 합성곱 신경망의 구조)

  • Chi, Sang-Mun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.5
    • /
    • pp.728-733
    • /
    • 2018
  • Deep learning has been actively studied for predicting protein secondary structure based only on the sequence information of the amino acids constituting the protein. In this paper, we compared the performances of the convolutional neural networks of various structures to predict the protein secondary structure. To investigate the optimal depth of the layer of neural network for the prediction of protein secondary structure, the performance according to the number of layers was investigated. We also applied the structure of GoogLeNet and ResNet which constitute building blocks of many image classification methods. These methods extract various features from input data, and smooth the gradient transmission in the learning process even using the deep layer. These architectures of convolutional neural networks were modified to suit the characteristics of protein data to improve performance.

The Method of Abandoned Object Recognition based on Neural Networks (신경망 기반의 유기된 물체 인식 방법)

  • Ryu, Dong-Gyun;Lee, Jae-Heung
    • Journal of IKEEE
    • /
    • v.22 no.4
    • /
    • pp.1131-1139
    • /
    • 2018
  • This paper proposes a method of recognition abandoned objects using convolutional neural networks. The method first detects an area for an abandoned object in image and, if there is a detected area, applies convolutional neural networks to that area to recognize which object is represented. Experiments were conducted through an application system that detects illegal trash dumping. The experiments result showed the area of abandoned object was detected efficiently. The detected areas enter the input of convolutional neural networks and are classified into whether it is a trash or not. To do this, I trained convolutional neural networks with my own trash dataset and open database. As a training result, I achieved high accuracy for the test set not included in the training set.

Quadtree-based Convolutional Neural Network Optimization to Quickly Calculate the Depth of Field of an Image (이미지의 피사계 심도를 빠르게 계산하기 위한 쿼드트리 기반의 합성곱 신경망 최적화)

  • Kim, Donghui;Kim, Soo-Kyun;Kim, Jong-Hyun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.01a
    • /
    • pp.257-260
    • /
    • 2021
  • 본 논문에서는 카메라의 포커싱과 아웃포커싱에 의해 이미지에서 뿌옇게 표현되는 DoF(Depth of field, 피사계 심도) 영역을 쿼드트리(Quadtree) 기반의 합성곱 신경망을 통해 빠르게 찾는 방법을 제안한다. 우리의 접근 방식은 RGB채널기반의 상호-상관 필터를 이용하여 DoF영역을 이미지로부터 효율적으로 분류하고, 적응형 트리인 쿼드트리를 기반으로 유의미한 영역만을 분류한다. 이 과정에서 손실 없이 온전하게 DoF영역을 추출하기 위한 필터링 과정을 거친다. 이러한 과정에서 얻어진 이미지 패치들은 전체 이미지에 비해 적은 영역으로 나타나며, 이 적은 개수의 패치들을 이용하여 네트워크 단계에서 사용할 이미지-DoF가중치 맵 데이터 쌍을 설정한다. 네트워크 과정에서 학습할 때 사용되는 데이터는 이미지와 상호-상관 필터 기반으로 추출된 DoF 가중치 맵을 이용한다. 본 논문에서 제안하는 쿼드트리 기반 합성곱 신경망은 이미지로부터 포커싱과 아웃포커싱된 DoF영역을 자동으로 추출하는 과정을 학습시키기 위해 사용된다. 결과적으로 학습에 필요한 데이터 영역이 줄어듦으로써 학습 시간과 메모리를 절약했으며, 테스트 결과로 얻은 DoF 가중치 이미지는 입력 이미지에서 DoF영역을 더욱더 빠른 시간 내에 찾아낸다.

  • PDF

Training Artificial Neural Networks and Convolutional Neural Networks using WFSO Algorithm (WFSO 알고리즘을 이용한 인공 신경망과 합성곱 신경망의 학습)

  • Jang, Hyun-Woo;Jung, Sung Hoon
    • Journal of Digital Contents Society
    • /
    • v.18 no.5
    • /
    • pp.969-976
    • /
    • 2017
  • This paper proposes the learning method of an artificial neural network and a convolutional neural network using the WFSO algorithm developed as an optimization algorithm. Since the optimization algorithm searches based on a number of candidate solutions, it has a drawback in that it is generally slow, but it rarely falls into the local optimal solution and it is easy to parallelize. In addition, the artificial neural networks with non-differentiable activation functions can be trained and the structure and weights can be optimized at the same time. In this paper, we describe how to apply WFSO algorithm to artificial neural network learning and compare its performances with error back-propagation algorithm in multilayer artificial neural networks and convolutional neural networks.

A Method for Detecting Concept Drift in Data Stream by Using Convolutional Neural Network (합성곱 신경망을 이용한 데이터스트림 환경에서의 개념 변화 검출 기법)

  • Kim, Daewon;Lim, Hyo-Sang
    • Annual Conference of KIPS
    • /
    • 2017.04a
    • /
    • pp.865-867
    • /
    • 2017
  • 본 논문에서는 데이터스트림 환경에서 개념 변화를 탐지하기 위해 합성곱 신경망(CNN)을 사용하는 방법을 제시한다. 데이터스트림 환경에서 입력될 수 있는 데이터를 패턴화하여 신경망 모델에 학습시키고, 패턴화한 데이터를 학습시킨 신경망 모델을 이용하여 스트림 환경에서 개념 변화를 검출 가능함을 보인다.

Classification of Trucks using Convolutional Neural Network (합성곱 신경망을 사용한 화물차의 차종분류)

  • Lee, Dong-Gyu
    • Journal of Convergence for Information Technology
    • /
    • v.8 no.6
    • /
    • pp.375-380
    • /
    • 2018
  • This paper proposes a classification method using the Convolutional Neural Network(CNN) which can obtain the type of trucks from the input image without the feature extraction step. To automatically classify vehicle images according to the type of truck cargo box, the top view images of the vehicle are used as input image and we design the structure of the CNN suitable for the input images. Learning images and correct output results is generated and the weights of neural network are obtained through the learning process. The actual image is input to the CNN and the output of the CNN is calculated. The classification performance is evaluated through comparison CNN output with actual vehicle types. Experimental results show that vehicle images could be classified with more than 90 percent accuracy according to the type of cargo box and this method can be used for pre-classification for inspecting loading defect.