Fig. 1. Convolution operation
Fig. 2. 3x3 MaxPooling(stride=2, shadow region=pooling center)
Fig. 3. Architecture of proposed CNN
Fig. 4. the example of learning data (a) background, output=0 (b) car, output=1 (c) small truck, output=2 (d) large truck, output=3 (e) small van, output=4 (f) large van, output=5
Fig. 5. (a) Input Image (b) Output value of softmax (c) 6 feature map of Conv1
Table 1. Classification category and learning data
Table 2. Classification result
References
- R. Girshick, J. Donahue, T. Darrell & J. Malik..(2014). Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. Proceedings of CVPR 2014, 580-587.
- G. S. Kim. (2002). Morphological Vehicle Classification Algorithm for Intelligent Transportation System. Journal of Korea Multimedia Society, 5(1), 10-17.
- W. S. Shin & C. H. Lee. (2008). Efficient Learning and Classification for Vehicle Type using Moving Cast Shadow Elimination in Vehicle Surveillance Video. The KIPS Transactions, 15B(1), 1-8. https://doi.org/10.3745/KIPSTB.2008.15-B.1.1
- Q. Paul, J. H. Hyeon & S. W. Ha. (2017). A Study on Attitude Estimation of UAV Using Image Processing. Journal of Convergence for Information Technology, 7(5), 137-148. https://doi.org/10.22156/CS4SMB.2017.7.5.137
- H. Huttunen, F. S. Yancheshmeh & K. Chen. (2016). Car type recognition with Deep Neural Networks. Proceedings of the IEEE Intelligent Vehicles Symposium, 1016-1021. DOI : 10.1109/IVS.2016.7535529
- Y. O. Adu-Gyamfi & A. Sharma. (2017). Automated Vehicle Recognition with Deep Convolutional Neural Networks. Transportation Research Record Journal of the Transportation Research Board, 2645, 113-122. DOI : 10.3141/2645-13
- J. C. Han, B. C. Koo & K. J. Cheoi. (2017). Obstacle Detection and Recognition System for Autonomous Driving Vehicle. Journal of Convergence for Information Technology, 7(6), 229-235. https://doi.org/10.22156/CS4SMB.2017.7.6.229
- B. Su, J. Shao, J. Zhou, X. Zhang, L. Mei & C. HuY. (2016). The Precise Vehicle Retrieval in Traffic Surveillance with Deep Convolutional Neural Netwoks. International Journal of Information and Electronics Engine, 6(3), 192-197. https://doi.org/10.18178/IJIEE.2016.6.3.622
- Z. Dong, Y. Wu, M. Pei & Y. Jia. (2015). Vehicle Type Classification Using a Semisupervised Convolutional Neural Network. IEEE Transactions on Intelligent Transportation systems, 16(4), 2247-2256. DOI : 10.1109/TITS.2015.2402438
- P. K. Kim & K. T. Lim. (2017). Vehicle Type Classification Using Bagging and Convolutional Neural Network on Multi View Surveillance Image. IEEE Conference on CVPRW, 11(2), 41-46. DOI : 10.1109/CVPRW.2017.126
- E. Rhee. (2017). Security Algorithm for Vehicle Type Recognition. Journal of Convergence for Information Technology, 7(2), 77-82. https://doi.org/10.22156/CS4SMB.2017.7.2.077
- W. K. Park, Y. Choi, H. K. KIM, G. S. Choi & H. Y. Jung. (2017). Night-time Vehicle Detection Method Using Convolutional Neural Network. The Korean Journal of IEMEK, 12(2), 113-120.
- M. K. Kwon & H. S. Yang. (2017). A scene search method based on principal character identification using convolutional neural network. Journal of Convergence for Information Technology, 7(2), 31-36. https://doi.org/10.22156/CS4SMB.2017.7.2.031
- Peemen, Mesman, Bart, Corporaal & Henk.. (2011). Speed sign detection and recognition by convolutional neural networks. Proceedings of the 8th International Automotive Congress, 11(2), 162-170.
- J. H. Ku. (2018). A Study on Adaptive Learning Model for Performance Improvement of Stream Analytics. Journal of Convergence for Information Technology, 8(1), 201-206. https://doi.org/10.22156/CS4SMB.2018.8.1.201