• Title/Summary/Keyword: 합성보

Search Result 2,342, Processing Time 0.03 seconds

A Study on the strength evaluation for T-type Composite Beam (T형 합성보의 내력평가에 관한 연구)

  • Kim, Sang Mo;Kim, Kyu Suk
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.4 s.65
    • /
    • pp.467-474
    • /
    • 2003
  • Composite action can be achieved by providing shear connectors between the steel top flange and concrete topping. Composite sections are stiffer than the sum of the individual stiffness of slab and beam. They can therefore carry heavier loads or similar loads with appreciably smaller deflection. They are also less prone to transient vibration. In this study, T-type Steel Composite beam (TSC-beam) was developed and tested. The test results of TSC beam were compared with the theoretical results based on composite actions.

Strength and Initial Stiffness of Composite Beams with an Egg-Shaped Web-Opening (달걀형 웨브 개구부를 가진 합성보의 강도와 초기강성도)

  • 김원기;박노웅
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.4 no.4
    • /
    • pp.27-35
    • /
    • 2000
  • 강한 지진 하에서 효율적으로 거동하도록 유도하는 연구중의 하나로서 개구부를 가진 합성보의 이력거동을 조사하고 있다. 직사각형 개구부를 가진 합성보에 대한 연구를 발전시켜 에너지 소산능력이 보다 큰 달걀형 개구부를 가진 합성보에 대한 연구를 수행하였다. 실험적 연구와 비선형 FEM 해석 연구 모두가 그러한 합성보의 연성도를 입증하였다. 본 연구는 달걀형 개구부를 가진 합성보의 강도와 초기강성도를 산정하는 약산식을 제시하였고, 그 결과를 실험 및 비선형 FEM 해석의 결과와 비교 분석하였다.

  • PDF

Flexural Capacity of the Profiled Steel Composite Beams with Truss Deck Plate (트러스 데크를 사용한 강판성형 합성보의 휨성능 평가)

  • Heo, Byung Wook;Kwak, Myong Keun;Bae, Kyu Woong;Jung, Sang Min;Kang, Suk Kuy
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.4
    • /
    • pp.413-423
    • /
    • 2007
  • Slimfloor composite-beam systems could considerably reduce the story height of a building if the steel beam would be installed deep into the concrete floor slab. However, as the depth of the steel beam's installation is limited, it cannot cope with the various demands of building systems. To address this problem, a profiled steel beam section that can control the depth of the steel beam's and slabs' installation was developed in this study. Presented herein are the results of an experiment that was conducted focusing on the flexural behavior of the partially connected composite beams with profiled steel beams encased in composite concrete slabs. Five full-scale specimens with different slab types, with or without shear connection and reinforcement bars, were constructed and tested in this study. As a result, the shear bond stress without an additional shear connection was found to be $0.20{\sim}0.76N/mm^2$due to the inherent mechanical and chemical bond stress.

Flexural Behavior of Steel Composite Beam with Built-up Cross-section by Bolt Connection (볼트로 체결된 강재 조립 합성보의 휨 거동)

  • Kim, Sung-Bo;Han, Man-Yop;Kim, Moon-Young;Ji, Tea-Sug;Jung, Kyoung-Hwan
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.2
    • /
    • pp.207-216
    • /
    • 2007
  • The flexural behavior of steel composite beam with built-up cross-section by bolt connection is presented in this paper. The composite effect due to bolt-connetion and friction between steel plate are considered to investigate the flexural behavior of steel composite beam. The displacement, bending stresses and shear stresses according to composite rate are calculated by F.E. analysis and these results are compared to the analytical values of non interaction beam and full interaction beam. As a result of analysis, the behavior of composite beam is more dependant on the composite rate than the friction of the steel plate. When the composite rate reaches $50{\sim}60%$, the behavior of composite beam is similar to that of fully composite beam.

Experimental and Numerical Study of Fire Resistance of Composite Beams (무피복 합성보의 내화성능에 대한 실험 및 해석적 연구)

  • Ahn, Jae Kwon;Lee, Cheol Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.2
    • /
    • pp.143-153
    • /
    • 2015
  • In this paper, the standard fire resistance test under load and associated numerical study were carried out to evaluate the fire resistance of unprotected partially encased beams and slimfloor beams. The temperature evolution and the deflection increase of the composite beam specimens were investigated and the effects of the key behavioral parameters including the load ratio, the reinforcement, and the fire exposure were analyzed. The test results showed that the temperature rise of the partially encased beams and slimfloor beams is considerably slow compared to the conventional H-shape composite beams. Up to at least 90 minutes, the reinforcements in the partially encased composite beams maintained below the temperature at which the cold steel strength is sustained. Unprotected partially encased beams and slimfloor beams in the experimental program achieved the fire resistance more than 2 hours according to the limiting deflection criteria. This implies that unprotected partially encased beams and slimfloor beams can be very promising alternatives to enhancing the fire resistance of steel beams. This study also conducted the fully coupled thermal-stress analysis by using the commercial code ABAQUS to the thermal and structural behaviour of composite beams in fire. The numerical predictions provide acceptable correlations with the experimental results.

Analysis of the Load Carrying Behavior of Shear Connection at the Interface of Encased Composite Beams (매입형 합성보의 전단합성거동에 대한 비교분석)

  • Shin, Hyun Seop;Heo, Byung Wook;Bae, Kyu Woong;Kim, Keung Hwan
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.1
    • /
    • pp.67-79
    • /
    • 2008
  • In this study, a bending test with three encased composite beams were carried out and analyzed using FEM in order to find how chemical adhesion, interface interlock, friction and composite action by shear studs contribute to stiffness, strength and composite action in the interface of encased compo site beams. The test and results of the FEM analysis showed that the difference in the ultimate moment capacity of the composite beams with and without studs is under 10%. The reason is that the effect of chemical adhesion, interface interlock, and friction in the interface on the composite action is so high that the encased beams have a moment capacity above some defined magnitude. Also, the increment of moment capacity up to plastic moment is not large and the increase of linearly proportioned.

Flexural Behavior of Steel Composite Beam with Built-up Cross-section Considering Bolt Deformation (볼트의 변형을 고려한 강재 조립 합성보의 휨거동)

  • Kim, Sung-Bo;Kim, Hun-Kyom;Jung, Kyoung-Hwan;Han, Man-Yop;Kim, Moon-Young
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.1
    • /
    • pp.43-50
    • /
    • 2008
  • The analysis and results of flexural behavior for steel composite beam with built-up cross-section considering bolt deformation are presented in this paper. The bolt deformation and the restrict effect due to bolt-connection and friction are considered to investigate the flexural behavior of steel composite beam. Nonlinear spring element in ABAQUS is used to consider bolt deformation, also the results are compared with those in case bolt deformations are ignored. The displacement, bending stresses and shear stresses are calculated by F.E. model, and these results are compared with the analytical value of no interaction beam, partial interaction beam and full interaction beam. As a result of analysis, the behavior of composite beam is more dependant on the composite rate than the friction of the steel. When the composite rate is more than 50%, the behavior of composite beam considering the effects of bolt deformation is similar to that of fully composite beam.

Strength and Initial Stiffness of Composite Beams with a Rectangular Web-Opening (직사각형 웨브 개구부를 가진 합성보의 강도와 초기강성도)

  • 김원기;박노웅;이승준
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.3
    • /
    • pp.55-62
    • /
    • 1999
  • For the efficient performance of steel and composite building structures subjected to strong earthquake, one of current research investigates the cyclic behavior of open-web composite beams. Both experimental test and nonlinear FEM analysis demonstrate their behavior so ductile that four T-sections around the corners of rectangular web-opening develop plastic hinges prior to potential brittle failure at the beam end, i.e. at the column face. This research proposes simplified equations for determining strength and initial stiffness of composite beams with a rectangular web-opening, and compares its results with those of experimental test and nonlinear FEM analysis.

  • PDF

Analysis of a Load Carrying Behavior of Shear Connection at the Interface of the Steel-Concrete Composite Beam (합성보 전단연결부의 구조거동에 대한 비교 분석)

  • Shin, Hyun Seop
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.6 s.79
    • /
    • pp.737-747
    • /
    • 2005
  • The connection of the slab with the steel beam and thus, the transmission of shear force at the interface of the steel-concrete composite beams is achieved with shear connectors, in general, with shear studs. The composite action through these shear studs has a significant influence on the load carrying behavior of the composite beams. The load carrying capacity of studs is determined through push-out tests. At present, the transferability of this load carrying capacity of studs to composite beams, especially in cases of partial interaction, is being questioned by experimental and theoretical investigations. In this study, a finite element model for the simulation of the behavior of the standard push-out specimen and the composite beams without the implementation of the load-slip curve of the stud connectors from the push-out test is developed. The load carrying behavior of the studs in the composite beams is estimated and compared with the results of the push-out test. The reason for the difference in the load carrying behavior of the studs in the push-out test specimen and in the composite beams is found.

Flexural Capacity of the Profiled Steel Composite Beams -Deep Deck Plate- (강판성형 합성보의 휨성능 평가 -춤이 깊은 합성데크-)

  • Heo, Byung Wook;Kwak, Myong Keun;Bae, Kyu Woong;Jeong, Sang Min
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.3
    • /
    • pp.247-258
    • /
    • 2007
  • This paper describes the results of an experimental study on the new type of encased composite beams that use deep deck plates, which could reduce the story height of buildings by controlling the bottom flange of steel beams. The profiled steel beam was thus developed. It was advantageous to the long span of the buildings. Seven full-scale specimens were constructed, and simply supported bending tests were conducted on the encased composite beams with different steel plate thicknesses, with and without shear studs, reinforcing bars, and web openings. The test results showed that the encased composite beams that were developed in this study had sufficient composite action without additional shear connectors due to their inherent shear-bond effects between the steel beams and concrete.