• Title/Summary/Keyword: 합성단면성능

Search Result 132, Processing Time 0.028 seconds

Flexural Performance of PHC Piles with Infilled concrete and Longitudinal Reinforcing Bars (속채움 콘크리트 및 길이방향 철근으로 보강된 PHC 파일의 휨성능)

  • Han, Sun-Jin;Lee, Jungmin;Kim, Min-Seok;Kim, Jae-Hyun;Kim, Kang Su;Oh, Young-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.3
    • /
    • pp.77-84
    • /
    • 2021
  • In this study, flexural tests of prestressed high strength spun concrete (PHC) piles reinforced with infilled concrete and longitudinal rebars were conducted, where the longitudinal rebar ratio and the presence of sludge formed on the inner surface of PHC pile were set as key test variables. A total of six PHC pile specimens were manufactured, and their flexural behaviors including failure mode, crack pattern, longitudinal strain distribution in a section and end slip between external PHC pile and infilled concrete were measured and discussed in detail. The test results revealed that the flexural stiffness and strength increased as the longitudinal rebar ratio became larger, and that the sludge formed on the inner surface of PHC pile did not show any detrimental effect on the flexural performance. In addition to the experimental approach, this study presents a nonlinear flexural analysis model considering compatibility conditions and strain and stress distributions of the PHC piles and infilled concrete. The rationality of the nonlinear flexural analysis model was verified by comparing it with test results, and it appeared that the proposed model well evaluated the flexural behavior of PHC piles reinforced with infilled concrete and longitudinal rebars with a good accuracy.

Pile-cap Connection Behavior Dependent on the Connecting Method between PHC pile and Footing (PHC말뚝과 확대기초 연결방법에 따른 접합부 거동)

  • Bang, Jin-Wook;Oh, Sang-Jin;Lee, Seung-Soo;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.3
    • /
    • pp.25-32
    • /
    • 2016
  • The pile-cap connection part which transfers foundation loads through pile body is critical element regarding flexural and shear force because the change of area, stress, and stiffness occurs in the this region suddenly. The purpose of this study is to investigate the structural behavior of pile-cap connection dependent on fabrication methods using conventional PHC pile and composite PHC pile. A series of test under cyclic lateral load was performed and the connection behavior was discussed. From the test results, it was found that the initial rotational stiffness of pile-cap connection was affected by the length of pile-head inserted in footing and the location of longitudinal reinforcing bars. The types of pile and location of longitudinal reinforcing bars governed the behavior of pile-cap connection regarding load-carrying capacity, ductility, and energy dissipation.

Analytical Behavior of FRP Girder filled with Concrete (콘크리트로 충진된 FRP 보의 해석을 통한 거동평가)

  • Jeong, Sang-Mo;Park, Dong-Won;Jeong, Yo-Sok;Kim, Hyun-Joon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.245-248
    • /
    • 2008
  • Recently, much research has been conducted on FRP composite to replace steel. However, the concept of FRP girder filled with concrete has not been fully attempted. This study focuses on the analytical behavior of FRP girders filled with concrete. FRP girders usually have large deflection due to relatively low elastic modulus compared to steel members. However, in the previous experimental investigation on small sized modular beams, it has been verified that the displacement of FRP-girder filled with concrete is reduced and the strength is increased considerably. In this research, analytical investigations have conducted to verify the analytical method by comparing the results with tests. In addition, analyses on large girders assembled with small modules have been carried out to predict the feasibility before tests. The analytical results showed that the assembled FRP girders can be used as substitutes for steel girders.

  • PDF

Development of Functional Feed Additive to Hanwoo Muscle Growth based on Natural Plant Byproducts (천연 농산부산물을 이용한 한우 기능성 사료소재 개발)

  • Ki Yong Chung
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2023.04a
    • /
    • pp.4-4
    • /
    • 2023
  • 다국적 제약회사에서 생산되는 제약화합물은 인간의 질병치료 뿐만 아니라 가축의 생산성을 향상시키는 물질으로도 활발하게 생산되는데 육우의 성장을 촉진하는 기능성 화합물들도 많이 있다. 북미에서 생산되는 소고기의 약 80%가 1번 이상의 성장촉진기술들이 활용되고 있다고 보고된다. 고기소로 생산되는 비육우에 적용되는 방법은 크게 피하 이식에 의해 혈류를 타고 성장을 촉진하는 17β-Estradiol과 합성 남성호르몬제인 Trenbolone acetate가 주로 활용되고, 비육후기 사료에 섞어서 급여하는 사료첨가제 형태인 β2-adrenergic agonist 같은 형태로 적용하게 된다. 근육을 성장하는 기술의 작용기전은 많은 선행연구에 의해 밝혀져 있는 반면 천연 알칼로이드 성분들의 기전은 밝혀진 것이 많지 않다. 한방제재들에서 많이 발견되는 알칼로이드 성분들은 생리활성 기능들을 가진 것으로 알려져 있지만, 생산, 수거, 가공, 추출 등의 공정에서 많은 비용이 발생하므로 비육우의 사료화 가능성은 아주 희박하다. 따라서 비용을 최소화 할 수 있는 후보재료를 검색중에 감자부산물을 확보하였고 기능성 물질의 추출과 사료첨가제 화 하여 비육우에 급여시험을 실시하였다. α-solanine과 α-chaconine은 감자의 잎, 과일 및 괴경에서 발견되는 글리코알칼로이드 화합물로, 쥐, 토끼, 닭과 같은 다양한 동물 모델에서 중독성을 가진 물질로 보고 되고 있다. 최근 연구에서는 비육우의 성능을 유도하는 데 사용되는 것으로 나타났다. 한우 송아지 3마리의 사태(Semimembranosus)와 등심(Longissimus Dorci)근육에서 추출된 근육위성 세포(BSC)에 다양한 수준의 α-solanine(control, 0.001, 0.01, 0.1, 1, 10μM)으로 처리해본 결과 근육관련 지표인 MHC2X과 β2-AR의 발현이 높게 나타난 것을 확인했다. 사료급여실험에서는 대조군에 비해 급여군의 등심단면적과 도체중이 향상되는 것을 확인하였다. 결과적으로 감자유래 농산부산물은 한우 비육우의 근육의 성장을 증가시키고, 그 작용기전은 β2-수용체에 작용하여 단백질 합성을 촉진시켜 근육을 축적시키는 것으로 확인하였다. 농산부산물을 이용한 기능성 사료개발은 최근 이슈가 되고 있는 축산분야 탄소저감을 개선할 수 있는 기술로 축산의 업사이클링 기술로 활용 가능하다.

  • PDF

An Experimental Study on the Structural Performance of Lateral Resistance in Steel Elevator Pit (강재엘리베이터 피트 측압저항 구조성능에 관한 실험적 연구)

  • Hong, Seong-Uk;Kim, Tae-Soo;Baek, Ki-Youl
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.3
    • /
    • pp.1-8
    • /
    • 2019
  • Steel elevator pit was developed for the purpose of minimizing the excavation, simplifying the construction of the frame and economical efficiency by improving the problems that occurred in the existing reinforced concrete. It is common to apply conventional RC method through excavation to underground structures such as underground floor collector well and elevator pit. In recent years, the use of steel collector well and steel elevator pits to reduce construction costs by minimizing the materials of steel and concrete has been continuously increasing. The steel elevator pit is an underground structure and then the performance of the welding part and the structure system is important. Specimen with only steel plate and concrete without studs could support the load more than 3 times than the specimen with deck only. Therefore, even if there is no stud, the deck (steel plate) rib is formed and the effect of restraining the steel plate and the concrete during the bending action can be expected. However, since sudden fracture in the elevator pit may occur, stud bolt arrangement is necessary for the composite effect of steel plate and concrete. It is expected that the bending strength can be expected to increase by about 15% or more depending with and without stud bolts.

Structural Behavior of the Reinforced Concrete Filled GFRP Tube (GFRP 보강 철근콘크리트 합성부재의 구조적 거동)

  • Lee, Seung-Sik;Joo, Hyung-Joong;Kang, In-Kyu;Yoon, Soon-Jong
    • Composites Research
    • /
    • v.23 no.4
    • /
    • pp.44-51
    • /
    • 2010
  • Recently, to solve the problems associated with the neutralization and corrosion of reinforced concrete compression members, the structural configurations such as CFFT (Concrete Filled GFRP Tube) and RCFFT (Reinforced Concrete Filled GFRR Tube) have been developed and applied to main members of civil engineering structure. These members can increase structural performance in terms of structural stability, ductility as well as chemical resistance compared with conventional concrete structural members. Many researches in numerous institutions to predict the load carrying capacity of the concrete compression member strengthened with FRP materials have been conducted and they have been suggested an equation for the prediction of the load carrying capacity of the members. Through the review of the research results, it was found that their results are similar each other. Moreover, it was also found that the results are not directly applicable to our specimens since the results are largely depended upon the member configurations. Also, since the accurate design criteria for the RC members strengthened with FRP such as RCFFT have not been established properly, relevant theoretical and experimental investigations must be conducted for the application to the practical structures. In this study, structural behavior of RCFFT was evaluated through compressive and quasi-static flexural tests in order to formulate design criteria for the structural design. In addition, the RCFFT members were also investigated to examine their confinement effect and the equations capable of estimating the compressive ultimate strength and flexural stiffness of the RCFFT members were proposed.

Performance Evaluation of Encased-Concrete Bridge Plate(Deep Corrugated Steel Plate) Member (콘크리트 충전 브릿지 플레이트(대골형 파형강판) 부재의 성능평가)

  • Sim, Jong-Sung;Park, Cheol-Woo;Kim, Tae-Soo;Lee, Hyoung-Ho;Kang, Tae-Sung
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.3
    • /
    • pp.297-303
    • /
    • 2010
  • The current encased-concrete deep corrugated steel plate has an arch type plate structure, which is a compressive strength-dominant structure that has a small moment due to its arch shape. Therefore, it increases the strength against compression by adding reinforcements to make concrete-filling spaces for increasing the compressive strength and forming cross sections that contain reinforced concrete. In this study, the safety factor of the new-concept encased-concrete bridge plate member was evaluated by comparing the compressive strength obtained from the compressive tests, flexural tests and the design compressive strength determined by using the Canadian Highway Bridge Design Code (CHBDC, 2003), which is a design standard for the encased-concrete bridge plate structures. The results of the safety factor evaluation using the design compressive strength and the test results showed that the safety factor was well above the appropriate value 2.0, which could be adjudged very conservative. If the safety factor based on this study results is considered and applied to the design, economical construction will be possible due to the reduced cross section and construction cost.

Flexural Behavior of Large-Diameter Composite PHC pile Using In-Filled Concrete and Reinforcement (속채움 콘크리트와 철근으로 보강된 대구경 합성 PHC말뚝의 휨성능 평가)

  • Bang, Jin-Wook;Park, Chan-Kyu;Yang, Seong-Yeong;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.5
    • /
    • pp.109-115
    • /
    • 2016
  • A demand of high bearing capacity of piles to resist heavy static loads has been increased. For this reason, the utilization of large diameter PHC piles including a range from 700 mm to 1,200 mm have been increased and applied to the construction sites in Korea recently. In this study, in order to increase the flexural strength capacity of the PHC pile, the large diameter composite PHC pile reinforced by in-filled concrete and reinforcement was developed and manufactured. All the specimens were tested under four-point bending setup and displacement control. From the strain behavior of transverse bar, it was found that the presence of transverse bar was effective against crack propagation and controlling crack width as well as prevented the web shear cracks. The flexural strength and mid-span deflection of LICPT specimens were increased by a maximum of 1.08 times and 1.19 times compared to the LICP specimens. This results indicated that the installed transverse bar is in an advantageous ductility performance of the PHC piles. A conventional layered sectional analysis for the pile specimens was performed to investigate the flexural strength according to the each used material. The calculated bending moment of conventional PHC pile and composite PHC pile, which was determined by P-M interaction curve, showed a safety factor 1.13 and 1.16 compared to the test results.

Evaluation on Shear Behaviors of the Dapped Ends of Domestic Composite Double Tee Slabs under the Short-Term Loading (단기하중하의 국내 합성 더블티 슬래브 댑단부 전단거동 평가)

  • 유승룡
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.5
    • /
    • pp.774-781
    • /
    • 2002
  • Shear behaviors of eight dapped ends of four full-scale domestic single-tee slabs were evaluated. The dapped ends with 10cm topping concrete were designed based on live load requirements for the domestic parking lot of m 500kgf/㎡ and for the large market of 1,200 kgf/㎡. All specimens were designed by the ACI 318-99 design. The variations of the experiment were the shape of hanger reinforcements as followings: 1) general PCI design method(currently used in domestic), 2) 90 degree bent-up, 3) 60 degree bent-up. All experiments were conducted with 1.2 m shear span. The results obtained in this study were 1) all specimens fully complied with the shear strength requirements as specified by ACI 318-99 except for one strand bond slip specimen, 2)a specimen with the 60 degree bent up hanger reinforcing detail showed the best shear behaviors under full service and ultimate load, and 3)a specimen with the 90 degree bent up hanger reinforcing detail resulted in the worst shear behaviors.

Development of Hybrid OCB Beam for the Long-span Building Structures (장경간 건축구조를 위한 하이브리드 OCB보의 개발)

  • Lee, Doo-Sung;Kim, Sang-Yeon;Kim, Tae-Kyun
    • Land and Housing Review
    • /
    • v.6 no.3
    • /
    • pp.129-138
    • /
    • 2015
  • The building structure in Korea is planned to maximize the use of space in recent. The hybrid OCB(Optimized Composite Beam) beam is developed to take advantage of using the space. The OCB beam is composed of the steel H-beam section reinforced by open strands in negative moment zone and the pretensioned PSC concrete section in positive zone. Flexural behavior of typical architectural hybrid OCB beam section was investigated by F.E.M. The 15m, 20m, 30m OCB models were tested on nonlinear material and geometry under static loading system. Following results are obtained from the analysis; 1)The OCB beam develop initial flexural cracking over full service loading. 2)Overall deflections of OCB beam under the service loads are less than those of the allowable limits in KCI Code(2012). 3)The ultimate load capacity get over the nominal strength of the OCB main section. The OCB beam is verified of structural reliability from the finite element analysis.