• Title/Summary/Keyword: 합성단면성능

Search Result 132, Processing Time 0.028 seconds

Finite Element Analysis on Reinforced Concrete Filled PHC Pile with Ring Type Composite Shear Connectors (링형 합성 전단연결재를 적용한 철근 콘크리트 충전 PHC말뚝의 유한요소해석)

  • Kim, Jeong-Hoi;Lee, Doo-Sung;Park, Young-Shik;Min, Chang-Shik
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.3
    • /
    • pp.249-257
    • /
    • 2017
  • The purpose of this study was to contribute to the field application cost effectively and reasonably by developing the functional piles that make up for the defects of PHC piles. CFP (Concrete Filled Pretensioned Spun High Strength Concrete Pile with Ring type Composite shear connectors) piles developed in this study increases the compressive stress through enlarged cross section by rearranging composite shear connectors and filling the hollow part of PHC pile with concrete. And it improved shear and bending performance placing the rebar (H13-8ea) within the PHC pile and the hollow part of PHC pile of rebar (H19-8ea). In addition, the composite shear connectors were placed for the composite behavior between PHC pile and filled concrete. Placing Rebars (H13-8ea) of PHC pile into composite shear connector holes are sleeve-type mechanical coupling method that filling the concrete to the gap of the two members. Nonlinear finite element analyzes were performed to verify the performance of shear and bending moments and it deduced the spacing of the composite shear connectors. Through a various interpretation of CFP piles, it's proved that the CFP pile can increase the shear and bending stiffness of the PHC pile effectively. Therefore, this can be utilized usefully on the construction sites.

An Experimental Study on the Fire Resistance Capacity of Asymmetric Slimflor Beam (비대칭 H형강 슬림플로어 보의 내화 성능에 관한 실험적 연구)

  • Park, Won-Sup;Kim, Heung-Youl;Kim, Hyung-Jun
    • Fire Science and Engineering
    • /
    • v.24 no.1
    • /
    • pp.40-45
    • /
    • 2010
  • Asymmetric Slimflor Beam had been unveiled with Thor beam (Hat beam) in Sweden since the late 1970s and had been developed by British Steen and SCI. In the major advanced countries in Europe after the early 1990s have interested in and developed this method, it has been concrened as the absence of hot-rolled section steel in the United Kingdom and welded of asymmetric section steel in Finland in the 2000s. It can be increase total floor area about 10%, save the interior and exterior materials, reduce the waste through reduction of the floor height. And it has more excellent fire resistance performance because less exposed than a regular composite steel beam in fire. This study is purpose that, a fire resistance performance of the Asymmetric Slimflor Beam in fire, it compared the temperature range with deflection of structure by fire behavior and load ratio of structure through change the shape of the steel cross-section in standard fire condition.

Evaluation on the Structural Performance and Economics of Ultra-high Performance Concrete Precast Bridges Considering the Construction Environment in North Korea (북한 건설환경을 고려한 초고성능 콘크리트 프리캐스트 교량의 구조성능 및 경제성 평가)

  • Kim, Kyoung-Chul;Koh, Kyung-Taek;Son, Min-Su;Ryu, Gum-Sung;Kang, Jae-Yoon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.2
    • /
    • pp.208-215
    • /
    • 2021
  • In this study, a customiz ed bridge system was developed for North Korea application. For the application of North Korea, the customized bridge system design, fabrication, and construction performance evaluation were performed using ultra-high performance concrete a compressive strength 120MPa or more and a direct tensile strength 7MPa or more. The comparison of the North Korean truck luggage load(30, 40, 55) and the Korean standard KL-510 load showed that cross-section increased as the load increased. Furthermore, a bridge with a span length of 30m was fabricated with ultra-high performance concrete for the construction performance evaluation. The evaluation of the load condition analysis was performed by a flexural test. The results showed that a bridge with a span length of 30m secured about 167% of sectional performance under initial cracking load conditions and about 134% of load bearing capacity under ultimate load conditions. As a result of economic analysis, the customized bridge system using ultra-high-performance concrete was less than about 11% of the upper construction cost compared to the steel composite girder bridge. Therefore, these results suggest that the price competitiveness can be secured when applying the ultra-high-performance concrete long-span bridge developed through this study.

A Study on Section Properties of Partially Concrete-Filled New Type Composite Beam (부분매입형 신형상 합성보의 단면성능에 관한 연구)

  • Yoon, Myung-Ho;Lee, Yoon-Hee;Lee, Ye-Seul
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.4 no.3
    • /
    • pp.7-12
    • /
    • 2013
  • The demand for the structural system of reduction of story height increases because buildings are getting higher. The existing structural systems are not efficiency. Thus, it is hard to reduce the story height and existing methods cannot secure economics as expected. This study aims at developing the partially concrete-filled new type composite beam, which can efficiently resist against the end negative moment and central positive moment, also reduce deflection of beams. Through case studies on loading of concentrated load and uniformly distributed load to fixed beam, we could find the most efficient ratio of moment of inertia and the ratio ${\alpha}$(end beam length to span). The gap space between middle and end beam can be used as facilities installation, consequently the suggested Omega beam system is expected to get the effect of reduction in story height as well as reduction of quantity.

FE Based Numerical Model to Consider Bond-slip Effect in Composite Beams (합성보의 부착슬립 효과를 고려한 유한요소 기반의 수치해석모델)

  • Kwak, Hyo-Gyoung;Hwang, Jin-Wook
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.1
    • /
    • pp.95-110
    • /
    • 2010
  • A numerical model to simulate bond-slip behavior of composite beam bridges is introduced in this paper. Assuming a linear bond stress-slip relation along the interface between the slab and girder, the slip behavior is implemented into a finite element formulation. Adopting the introduced model, the slip behavior can be taken account even in a beam element which is composed of both end nodes only. Governing equation of the slip behavior, based on the linear partial interaction theory, can be determined from the force equilibrium and a constant curvature distribution across the section of a composite beam. Since the governing equation for the slip behavior requires the moment values at both end nodes, the piecewise linear distribution of the constant bending moment in an element is assumed. Analysis results by the model are compared with numerical results and experimental values, and load-displacement relations of composite beams were then evaluated to verify the validity of the proposed model.

Evaluation of Fire Resistance of Unprotected Concrete-filled Rectangular Steel Tubular Columns under Axial Loading (재하가열시험에 의한 무내화피복 콘크리트충전 각형강관기둥의 내화성능평가)

  • Ahn, Jae Kwon;Lee, Cheol Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.4
    • /
    • pp.323-334
    • /
    • 2014
  • In this paper, experimental program and associated numerical study were carried out to evaluate the fire resistance of unprotected concrete-filled rectangular steel tubular (CFT) columns subjected to the standard fire. The key testing parameters included the length effect, the load ratio, and the sectional dimensions of the CFT columns. Temperature distribution and axial deformation of the CFT column specimens were measured and analyzed. Rather early local buckling of steel tubes was observed in all the specimens. This caused subsequent load transfer from steel tube to concrete, and eventually triggered concrete crushing, or complete loss of the load bearing capacity of the column. This implies that the limit state of local buckling as well as overall flexural buckling should be incorporated in fire design procedure. As expected, the fire resistance time of specimen with higher load ratio consistently lessened. The prediction of fire resistance time of unprotected CFT columns based on the limiting steel temperature in current design codes or the formula proposed by previous studies is slightly conservative compared to the fire test results available. To establish the finite element analysis model that can be used to predict the thermal and structural behaviour of unprotected CFT columns in fire, the fully coupled thermal-stress analysis was also tried by using the commercial code ABAQUS. The numerical results showed a reasonable global correlation with the experimental results.

Flexural Testing of Asymmetric Hybrid Composite Beams Fabricated from High-strength Steels (고강도강재를 적용한 비대칭 하이브리드 합성보의 휨거동 실험)

  • Jun, Su Chan;Han, Kyu Hong;Lee, Cheol Ho;Kim, Jin Won
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.3
    • /
    • pp.217-228
    • /
    • 2017
  • Full-scale flexural testing of asymmetric H-shape hybrid composite beams was conducted in this study. In fabricating hybrid H-shape sections, high strength steels were utilized for the bottom flange while ordinary strength steels were used for the top flange and web. With adding a fully composite floor slab, a total of 8 hybrid composite beam specimens were tested. The primary objective was to develop the asymmetric hybrid H-shape composite beams with maximized flexural efficiency and investigate their flexural behavior. Not all the hybrid composite specimens tested in this study exhibited the plastic moment and reasonable deformability. In the specimens with high-strength bottom flange, the longitudinal shear crack of the slab along the beam axis often preceded the development of beam plastic moment, although the slab was designed as fully composite. The mechanical reason for this unexpected behavior is discussed. It is emphasized that the longitudinal shear strength of composite slab should be checked in designing hybrid composite beams utilizing high strength steels like in this study.

An Experimental Study on the Structural Behavior of Steel-Concrete Composite Rahmen Bridge with Hinged End Supports (하단힌지 강합성 라멘교의 구조적 거동에 대한 실험적 연구)

  • Choi, Jin Woo;Jang, Min Jun;Cheon, Jin Uk;Yoon, Soon Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.2
    • /
    • pp.195-205
    • /
    • 2015
  • The rahmen bridge is well known common type of bridge in which all members are connected rigidly. The rahmen bridge is built for several situations because it has many advantages such as no need of bridge bearing system, easy of maintenance, reduction of the cross-sectional area of superstructure, and relatively low construction cost compared with other bridge types. Recently, to lengthen the span of rahmen bridge system, steel-concrete composite beam is used for superstructure of rahmen bridge instead of normal concrete girder with slab. However, member forces are increased because of extension of span length of superstructure and substructure is designed and constructed inefficiently when steel-concrete composite rahmen bridge is designed. In this study, new-type steel-concrete composite bridge is suggested. New-type steel-concrete composite rahmen bridge is adopted hinge connection between abutment and foundation for the reduction of the bending momemt at the foundation. In this study, we present the results of experiment conducted to estimate the load carrying capacity of new-type steel-concrete composite rahmen bridge and the structural characteristics of hinge connection.

Experimental Study on Double Skin Composite Walls Subjected to Cyclic Loading (주기하중을 받는 이중강판합성벽의 실험연구)

  • Eom, Tae Sung;Park, Hong Gun;Kim, Jin Ho;Chang, In Hwa
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.2
    • /
    • pp.289-301
    • /
    • 2008
  • Double skin composite (DSC) wall is a structural wall that is filed with concrete between two steel plate skins connected by tie bars. This type of wall was developed to enhance the structural performance of wall, to reduce wall thickness, and to enhance constructibility, eliminating the use of formwork and re-bars. In this study, cyclic tests were performed to investigate the inelastic behavior and earthquake resistance of isolated and coupled DSC walls with rectangular and T-shapedcross-sections. The DSC walls showed stable cyclic behaviors, exhibiting excellent energy dissipation capacity. The te st specimens failed by the tensile fracture of welded joints at the wall base and coupling beam and by the severe local buckling of the steel plate. The deformation capacity of the walls varied with the connection details at the wall base and their cross-sectional shapes. The specimens with well-detailed connections at the wall base showed relatively god deformation capacity ranging from 2.0% to 3.7% drift ratio. The load-carrying capacities of the isolated and coupled wall specimens were evaluated considering their inelastic behavior. The results were compared with the test results.

Analysis Study on Fire Performance with Internal Anchored Concrete Filled Steel Tube Columns According to Percent of Steel-Fibers (강섬유 콘크리트 혼입율에 따른 내부앵커형 콘크리트 충전기둥 내화성능에 관한 해석적 연구)

  • Kim, Sun Hee;Yom, Kong Soo;Kim, Yong Hwan;Choi, Sung Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.1
    • /
    • pp.23-34
    • /
    • 2016
  • Concrete filled steel tube system has two major advantages. First, the confinement effect of steel tube improves the compressive strength of concrete. Second, the load capacity and deformation capacity of members are improved because concrete restrains local buckling of steel tube. It does, however, involve workability problem of using stud bolts or anchor bolts to provide composite effect for larger cross-sections. While the ribs inside the columns are desirable in terms of compressive behavior, they cause the deterioration in load capacity upon in-plane deformation resulting from thermal deformation. Since the ribs are directly connected with the concrete, the deformation of the ribs accelerates concrete cracking. Thus, it is required to improve the toughness of the concrete to resist the deformation of the ribs. Welding built-up tubular square columns can secure safety in terms of fire resistance if the problem are solved. This study focuses on mixing steel fiber in the concrete to improve the ductility and toughness of the columns. In order to evaluate fire resistance performance, loaded heating test was conducted with 8 specimens. The behavior and thermal deformation capacity of the specimens were analyzed for major variables including load ratio. The reliability of heat transfer and thermal stress analysis model was verified through the comparison of the results between the test and previous study.