• 제목/요약/키워드: 합성곱 신경망 구조 설계

검색결과 19건 처리시간 0.023초

그래프 합성곱-신경망 구조 탐색 : 그래프 합성곱 신경망을 이용한 신경망 구조 탐색 (Graph Convolutional - Network Architecture Search : Network architecture search Using Graph Convolution Neural Networks)

  • 최수연;박종열
    • 문화기술의 융합
    • /
    • 제9권1호
    • /
    • pp.649-654
    • /
    • 2023
  • 본 논문은 그래프 합성곱 신경망을 이용한 신경망 구조 탐색 모델 설계를 제안한다. 딥 러닝은 블랙박스로 학습이 진행되는 특성으로 인해 설계한 모델이 최적화된 성능을 가지는 구조인지 검증하지 못하는 문제점이 존재한다. 신경망 구조 탐색 모델은 모델을 생성하는 순환 신경망과 생성된 네트워크인 합성곱 신경망으로 구성되어있다. 통상의 신경망 구조 탐색 모델은 순환신경망 계열을 사용하지만 우리는 본 논문에서 순환신경망 대신 그래프 합성곱 신경망을 사용하여 합성곱 신경망 모델을 생성하는 GC-NAS를 제안한다. 제안하는 GC-NAS는 Layer Extraction Block을 이용하여 Depth를 탐색하며 Hyper Parameter Prediction Block을 이용하여 Depth 정보를 기반으로 한 spatial, temporal 정보(hyper parameter)를 병렬적으로 탐색합니다. 따라서 Depth 정보를 반영하기 때문에 탐색 영역이 더 넓으며 Depth 정보와 병렬적 탐색을 진행함으로 모델의 탐색 영역의 목적성이 분명하기 때문에 GC-NAS대비 이론적 구조에 있어서 우위에 있다고 판단된다. GC-NAS는 그래프 합성곱 신경망 블록 및 그래프 생성 알고리즘을 통하여 기존 신경망 구조 탐색 모델에서 순환 신경망이 가지는 고차원 시간 축의 문제와 공간적 탐색의 범위 문제를 해결할 것으로 기대한다. 또한 우리는 본 논문이 제안하는 GC-NAS를 통하여 신경망 구조 탐색에 그래프 합성곱 신경망을 적용하는 연구가 활발히 이루어질 수 있는 계기가 될 수 있기를 기대한다.

저해상도 영상 자료를 사용하는 얼굴 표정 인식을 위한 소규모 심층 합성곱 신경망 모델 설계 (A Design of Small Scale Deep CNN Model for Facial Expression Recognition using the Low Resolution Image Datasets)

  • 살리모프 시로지딘;류재흥
    • 한국전자통신학회논문지
    • /
    • 제16권1호
    • /
    • pp.75-80
    • /
    • 2021
  • 인공 지능은 놀라운 혜택을 제공하는 우리 삶의 중요한 부분이 되고 있다. 이와 관련하여 얼굴 표정 인식은 최근 수십 년 동안 컴퓨터 비전 연구자들 사이에서 뜨거운 주제 중 하나였다. 저해상도 이미지의 작은 데이터 세트를 분류하려면 새로운 소규모 심층 합성곱 신경망 모델을 개발해야 한다. 이를 위해 소규모 데이터 세트에 적합한 방법을 제안한다. 이 모델은 기존 심층 합성곱 신경망 모델에 비해 총 학습 가능 가중치 측면에서 메모리의 일부만 사용하지만 FER2013 및 FERPlus 데이터 세트에서 매우 유사한 결과를 보여준다.

합성곱 신경망을 사용한 화물차의 차종분류 (Classification of Trucks using Convolutional Neural Network)

  • 이동규
    • 융합정보논문지
    • /
    • 제8권6호
    • /
    • pp.375-380
    • /
    • 2018
  • 본 논문에서는 화물차 차종을 분류하기 위해서 특징추출단계 없이 입력영상으로부터 차종분류결과를 얻을 수 있는 합성곱 신경망을 사용한 분류방법을 제안한다. 차량의 위에서 촬영된 영상을 입력으로 사용하고 입력영상에 적합한 합성곱 신경망의 구조를 설계한다. 차종과 화물칸의 형태에 따라 차종을 자동 분류하기 위한 학습데이터를 생성하고 지도학습의 형태로 학습시키기 위해 분류된 영상과 올바른 출력결과를 제시하여 신경망의 가중치를 학습시킨다. 실제 영상을 입력하여 합성곱 신경망의 출력을 계산하였고 실제 차종과의 비교를 통해 분류 성능을 평가 하였다. 실험결과 화물의 차종과 적재함의 형태에 따라 90%이상의 정확도로 영상을 분류할 수 있었고, 적재불량 검사의 사전 분류에 활용될 수 있다.

딥러닝 알고리즘을 이용한 강우 발생시의 유량 추정에 관한 연구 (A study on discharge estimation for the event using a deep learning algorithm)

  • 송철민
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.246-246
    • /
    • 2021
  • 본 연구는 강우 발생시 유량을 추정하는 것에 목적이 있다. 이를 위해 본 연구는 선행연구의 모형 개발방법론에서 벗어나 딥러닝 알고리즘 중 하나인 합성곱 신경망 (convolution neural network)과 수문학적 이미지 (hydrological image)를 이용하여 강우 발생시 유량을 추정하였다. 합성곱 신경망은 일반적으로 분류 문제 (classification)을 해결하기 위한 목적으로 개발되었기 때문에 불특정 연속변수인 유량을 모의하기에는 적합하지 않다. 이를 위해 본 연구에서는 합성곱 신경망의 완전 연결층 (Fully connected layer)를 개선하여 연속변수를 모의할 수 있도록 개선하였다. 대부분 합성곱 신경망은 RGB (red, green, blue) 사진 (photograph)을 이용하여 해당 사진이 나타내는 것을 예측하는 목적으로 사용하지만, 본 연구의 경우 일반 RGB 사진을 이용하여 유출량을 예측하는 것은 경험적 모형의 전제(독립변수와 종속변수의 관계)를 무너뜨리는 결과를 초래할 수 있다. 이를 위해 본 연구에서는 임의의 유역에 대해 2차원 공간에서 무차원의 수문학적 속성을 갖는 grid의 집합으로 정의되는 수문학적 이미지는 입력자료로 활용했다. 합성곱 신경망의 구조는 Convolution Layer와 Pulling Layer가 5회 반복하는 구조로 설정하고, 이후 Flatten Layer, 2개의 Dense Layer, 1개의 Batch Normalization Layer를 배열하고, 다시 1개의 Dense Layer가 이어지는 구조로 설계하였다. 마지막 Dense Layer의 활성화 함수는 분류모형에 이용되는 softmax 또는 sigmoid 함수를 대신하여 회귀모형에서 자주 사용되는 Linear 함수로 설정하였다. 이와 함께 각 층의 활성화 함수는 정규화 선형함수 (ReLu)를 이용하였으며, 모형의 학습 평가 및 검정을 판단하기 위해 MSE 및 MAE를 사용했다. 또한, 모형평가는 NSE와 RMSE를 이용하였다. 그 결과, 모형의 학습 평가에 대한 MSE는 11.629.8 m3/s에서 118.6 m3/s로, MAE는 25.4 m3/s에서 4.7 m3/s로 감소하였으며, 모형의 검정에 대한 MSE는 1,997.9 m3/s에서 527.9 m3/s로, MAE는 21.5 m3/s에서 9.4 m3/s로 감소한 것으로 나타났다. 또한, 모형평가를 위한 NSE는 0.7, RMSE는 27.0 m3/s로 나타나, 본 연구의 모형은 양호(moderate)한 것으로 판단하였다. 이에, 본 연구를 통해 제시된 방법론에 기반을 두어 CNN 모형 구조의 확장과 수문학적 이미지의 개선 또는 새로운 이미지 개발 등을 추진할 경우 모형의 예측 성능이 향상될 수 있는 여지가 있으며, 원격탐사 분야나, 위성 영상을 이용한 전 지구적 또는 광역 단위의 실시간 유량 모의 분야 등으로의 응용이 가능할 것으로 기대된다.

  • PDF

합성곱 신경망을 이용한 오염부하량 예측에 관한 연구 (A study on pollutant loads prediction using a convolution neural networks)

  • 송철민
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.444-444
    • /
    • 2021
  • 하천의 오염부하량 관리 계획은 지속적인 모니터링을 통한 자료 구축과 모형을 이용한 예측결과를 기반으로 수립된다. 하천의 모니터링과 예측 분석은 많은 예산과 인력 등이 필요하나, 정부의 담당 공무원 수는 극히 부족한 상황이 일반적이다. 이에 정부는 전문가에게 관련 용역을 의뢰하지만, 한국과 같이 지형이 복잡한 지역에서의 오염부하량 배출 특성은 각각 다르게 나타나기 때문에 많은 예산 소모가 발생 된다. 이를 개선하고자, 본 연구는 합성곱 신경망 (convolution neural network)과 수문학적 이미지 (hydrological image)를 이용하여 강우 발생시 BOD 및 총인의 부하량 예측 모형을 개발하였다. 합성곱 신경망의 입력자료는 일반적으로 RGB (red, green, bule) 사진을 이용하는데, 이를 그래도 오염부하량 예측에 활용하는 것은 경험적 모형의 전제(독립변수와 종속변수의 관계)를 무너뜨리는 결과를 초래할 수 있다. 이에, 본 연구에서는 오염부하량이 수문학적 조건과 토지이용 등의 변수에 의해 결정된다는 인과관계를 만족시키고자 수문학적 속성이 내재된 수문학적 이미지를 합성곱 신경망의 훈련자료로 사용하였다. 수문학적 이미지는 임의의 유역에 대해 2차원 공간에서 무차원의 수문학적 속성을 갖는 grid의 집합으로 정의되는데, 여기서 각 grid의 수문학적 속성은 SCS 토양보존국(soil conservation service, SCS)에서 발표한 수문학적 토양피복형수 (curve number, CN)를 이용하여 산출한다. 합성곱 신경망의 구조는 2개의 Convolution Layer와 1개의 Pulling Layer가 5회 반복하는 구조로 설정하고, 1개의 Flatten Layer, 3개의 Dense Layer, 1개의 Batch Normalization Layer를 배열하고, 마지막으로 1개의 Dense Layer가 연결되는 구조로 설계하였다. 이와 함께, 각 층의 활성화 함수는 정규화 선형함수 (ReLu)로, 마지막 Dense Layer의 활성화 함수는 연속변수가 도출될 수 있도록 회귀모형에서 자주 사용되는 Linear 함수로 설정하였다. 연구의 대상지역은 경기도 가평군 조종천 유역으로 선정하였고, 연구기간은 2010년 1월 1일부터 2019년 12월 31일까지로, 2010년부터 2016년까지의 자료는 모형의 학습에, 2017년부터 2019년까지의 자료는 모형의 성능평가에 활용하였다. 모형의 예측 성능은 모형효율계수 (NSE), 평균제곱근오차(RMSE) 및 평균절대백분율오차(MAPE)를 이용하여 평가하였다. 그 결과, BOD 부하량에 대한 NSE는 0.9, RMSE는 1031.1 kg/day, MAPE는 11.5%로 나타났으며, 총인 부하량에 대한 NSE는 0.9, RMSE는 53.6 kg/day, MAPE는 17.9%로 나타나 본 연구의 모형은 우수(good)한 것으로 판단하였다. 이에, 본 연구의 모형은 일반 ANN 모형을 이용한 선행연구와는 달리 2차원 공간정보를 반영하여 오염부하량 모의가 가능했으며, 제한적인 입력자료를 이용하여 간편한 모델링이 가능하다는 장점을 나타냈다. 이를 통해 정부의 물관리 정책을 위한 의사결정 및 부족한 물관리 분야의 행정력에 도움이 될 것으로 생각된다.

  • PDF

합성곱 신경망 기반의 딥러닝을 이용한 섬유 강화 복합재료의 적층 각도 예측 (Prediction of Stacking Angles of Fiber-reinforced Composite Materials Using Deep Learning Based on Convolutional Neural Networks)

  • 홍현수;김원기;전도윤;이관호;김성수
    • Composites Research
    • /
    • 제36권1호
    • /
    • pp.48-52
    • /
    • 2023
  • 섬유 강화 복합재료는 방향성을 가지고 있기 때문에 적층 순서에 따라서 구조물의 기계적인 특성은 매우 달라질 수 있다. 따라서, 상황과 용도에 따른 복합재료 구조물의 적층 설계는 필수적이다. 그러나 제작된 복합재료 구조물의 적층 각도는 제작 환경이나 구조물 형상에 따라 설계 값과 편차를 가지는 경우가 많으며, 이는 구조적 성능에 영향을 끼칠 수 있다. 따라서 구조물의 신뢰성 확보를 위해서는 적층 설계 뿐만 아니라 제작된 복합재료의 적층각에 대한 분석 또한 매우 중요하다. 본 연구에서는 합성곱 신경망(Convolutional neural network; CNN) 기반의 딥러닝(Deep learning)을 이용하여 섬유 강화 복합재료의 실제 단면 이미지로부터 적층 각도를 예측하였다. 여러 적층 각도를 가지는 탄소 섬유 강화 복합재료 시편을 제작하고, 광학 현미경을 이용하여 Micro-scale로 실제 단면을 촬영하였다. 다양한 적층 각도에 따른 복합재료 시편의 단면 이미지 데이터를 이용하여 합성곱 신경망 기반의 딥러닝 모델에 대하여 학습을 수행하였다. 그 결과 높은 정확도로 실제 섬유 강화 복합재료 단면 이미지로부터 적층 각도를 예측할 수 있었다.

딥러닝 합성곱에서 데이터 재사용에 최적화된 GPGPU 설계 (Design of an Optimized GPGPU for Data Reuse in DeepLearning Convolution)

  • 남기훈;이광엽;정준모
    • 전기전자학회논문지
    • /
    • 제25권4호
    • /
    • pp.664-671
    • /
    • 2021
  • 본 논문은 합성곱 신경망에 데이터 재사용 방법을 효과적으로 적용하여 연산 횟수와 메모리 접근 횟수를 줄일 수 있는 GPGPU구조를 제안한다. 합성곱은 kernel과 입력 데이터를 이용한 2차원 연산으로 kernel이 slide하는 방법으로 연산이 이루어 진다. 이때, 합성곱 연산이 완료될 때 까지 kernel을 캐시메모리로 부터 전달 받는 것이 아니고 내부 레지스터를 이용하는 재사용 방법을 제안한다. SIMT방법으로 명령어가 실행되는 GPGPU의 원리 이용하여 데이터 재사용의 효과를 높이기 위해 합성곱에 직렬 연산 방식을 적용하였다. 본 논문에서는 레지스터기반 데이터 재사용을 위하여 kernel을 4×4로 고정하고 이를 효과적으로 지원하기 위한 warp 크기와 레지스터 뱅크를 갖는 GPGPU를 설계하였다. 설계된 GPGPU의 합성곱 신경망에 대한 성능을 검증하기 위해 FPGA로 구현한 뒤 LeNet을 실행시키고 TensorFlow를 이용한 비교 방법으로 AlexNet에 대한 성능을 측정하였다. 측정결과 AlexNet기준 1회 학습 속도는 0.468초이며 추론 속도는 0.135초이다.

초기 볼트풀림 상태의 볼트 체결력 예측을 위한 주파수응답 유사성 기반의 합성곱 신경망 (Convolutional Neural Network-based Prediction of Bolt Clamping Force in Initial Bolt Loosening State Using Frequency Response Similarity)

  • 이제현;한정삼
    • 한국전산구조공학회논문집
    • /
    • 제36권4호
    • /
    • pp.221-232
    • /
    • 2023
  • 본 논문에서는 볼트로 체결된 구조체에 대하여 초기 볼트풀림 상태에서의 볼트 체결력 예측 합성곱 신경망 훈련 방법을 제시한다. 8개의 볼트의 체결력이 변경된 상태에서 계산한 주파수응답들을 완전 체결된 상태의 초기 모델과의 크기 및 모양 유사성을 표현하는 유사성 지도로 생성한다. 주파수응답 데이터들의 생성에는 크리로프 부공간법 기반의 모델차수축소법을 적용하여 효율적인 방법으로 수행할 수 있도록 한다. 합성곱 신경망 모델은 회귀 출력 계층을 사용하여 볼트의 체결력을 예측하도록 하였으며, 훈련 데이터의 개수와 합성곱 신경망 계층의 개수를 다르게 준비하여 훈련시킨 네트워크들을 비교하여 그 성능을 평가하였다. 주파수응답에서 파생되는 유사성 지도를 입력 데이터로 사용하여 초기 볼트풀림 영역에서 볼트 체결력의 진단 가능성과 유효성을 제시하였다.

경량화된 딥러닝 구조를 이용한 실시간 초고해상도 영상 생성 기술 (Deep Learning-based Real-Time Super-Resolution Architecture Design)

  • 안세현;강석주
    • 방송공학회논문지
    • /
    • 제26권2호
    • /
    • pp.167-174
    • /
    • 2021
  • 초고해상도 변환 문제에서 최근 딥러닝을 사용하면서 큰 성능 개선을 얻고 있다. 빠른 초고해상도 합성곱 신경망 (FSRCNN)은 딥러닝 기반 초고해상도 알고리즘으로 잘 알려져 있으며, 여러 개의 합성곱 층로 추출한 저 해상도의 입력 특징을 활용하여 역합성곱 층에서 초고해상도의 영상을 출력하는 알고리즘이다. 본 논문에서는 병렬 연산 효율성을 고려한 FPGA 기반 합성곱 신경망 가속기를 제안한다. 특히 역합성곱 층을 합성곱 층으로 변환하는 방법을 통해서 에너지 효율적인 가속기를 설계했다. 또한 제안한 방법은 FPGA 리소스를 고려하여 FSRCNN의 구조를 변형한 Optimal-FSRCNN을 제안한다. 사용하는 곱셈기의 개수를 FSRCNN 대비 3.47배 압축하였고, 초고해상도 변환 성능을 평가하는 지표인 PSNR은 FSRCNN과 비슷한 성능을 내고 있다. 이를 통해서 FPGA에 최적화된 네트워크를 구현하여 FHD 입력 영상을 UHD 영상으로 출력하는 실시간 영상처리 기술을 개발했다.

벡터 기반 데이터 증강과 인공신경망 기반 특징 전달을 이용한 효율적인 균열 데이터 수집 기법 (Efficient Collecting Scheme the Crack Data via Vector based Data Augmentation and Style Transfer with Artificial Neural Networks)

  • 윤주영;김동희;김종현
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2021년도 제64차 하계학술대회논문집 29권2호
    • /
    • pp.667-669
    • /
    • 2021
  • 본 논문에서는 벡터 기반 데이터 증강 기법(Data augmentation)을 제안하여 학습 데이터를 구축한 뒤, 이를 합성곱 신경망(Convolutional Neural Networks, CNN)으로 실제 균열과 가까운 패턴을 표현할 수 있는 프레임워크를 제안한다. 건축물의 균열은 인명 피해를 가져오는 건물 붕괴와 낙하 사고를 비롯한 큰 사고의 원인이다. 이를 인공지능으로 해결하기 위해서는 대량의 데이터 확보가 필수적이다. 하지만, 실제 균열 이미지는 복잡한 패턴을 가지고 있을 뿐만 아니라, 위험한 상황에 노출되기 때문에 대량의 데이터를 확보하기 어렵다. 이러한 데이터베이스 구축의 문제점은 인위적으로 특정 부분에 변형을 주어 데이터양을 늘리는 탄성왜곡(Elastic distortion) 기법으로 해결할 수 있지만, 본 논문에서는 이보다 향상된 균열 패턴 결과를 CNN을 활용하여 보여준다. 탄성왜곡 기법보다 CNN을 이용했을 때, 실제 균열 패턴과 유사하게 추출된 결과를 얻을 수 있었고, 일반적으로 사용되는 픽셀 기반 데이터가 아닌 벡터 기반으로 데이터 증강을 설계함으로써 균열의 변화량 측면에서 우수함을 보였다. 본 논문에서는 적은 개수의 균열 데이터를 입력으로 사용했음에도 불구하고 균열의 방향 및 패턴을 다양하게 생성하여 쉽게 균열 데이터베이스를 구축할 수 있었다. 이는 장기적으로 구조물의 안정성 평가에 이바지하여 안전사고에 대한 불안감에서 벗어나 더욱 안전하고 쾌적한 주거 환경을 조성할 것으로 기대된다.

  • PDF