• Title/Summary/Keyword: 함몰

Search Result 459, Processing Time 0.025 seconds

Classification of Ground Subsidence Factors for Prediction of Ground Subsidence Risk (GSR) (굴착공사 중 지반함몰 위험예측을 위한 지반함몰인자 분류)

  • Park, Jin Young;Jang, Eugene;Kim, Hak Joon;Ihm, Myeong Hyeok
    • The Journal of Engineering Geology
    • /
    • v.27 no.2
    • /
    • pp.153-164
    • /
    • 2017
  • The geological factors for causing ground subsidence are very diverse. It can be affected by any geological or extrinsic influences, and even within the same geological factor, the soil depression impact factor can be determined by different physical properties. As a result of reviewing a large number of papers and case histories, it can be seen that there are seven categories of ground subsidence factors. The depth and thickness of the overburden can affect the subsidence depending on the existence of the cavity, whereas the depth and orientation of the boundary between soil and rock are dominant factors in the ground composed of soil and rock. In case of soil layers, more various influencing factors exist such as type of soil, shear strength, relative density and degree of compaction, dry unit weight, water content, and liquid limit. The type of rock, distance from the main fracture and RQD can be influential factors in the bedrock. When approaching from the hydrogeological point of view, the rainfall intensity, the distance and the depth from the main channel, the coefficient of permeability and fluctuation of ground water level can influence to ground subsidence. It is also possible that the ground subsidence can be affected by external factors such as the depth of excavation and distance from the earth retaining wall, groundwater treatment methods at excavation work, and existence of artificial facilities such as sewer pipes. It is estimated that to evaluate the ground subsidence factor during the construction of underground structures in urban areas will be essential. It is expected that ground subsidence factors examined in this study will contribute for the reliable evaluation of the ground subsidence risk.

Ground Subsidence Risk Grade Prediction Model Based on Machine Learning According to the Underground Facility Properties and Density (기계학습 기반 지하매설물 속성 및 밀집도를 활용한 지반함몰 위험도 예측 모델)

  • Sungyeol Lee;Jaemo Kang;Jinyoung Kim
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.4
    • /
    • pp.23-29
    • /
    • 2023
  • Ground subsidence shows a mechanism in which the upper ground collapses due to the formation of a cavity due to the movement of soil particles in the ground due to the formation of a waterway because of damage to the water supply/sewer pipes. As a result, cavity is created in the ground and the upper ground is collapsing. Therefore, ground subsidence frequently occurs mainly in downtown areas where a large amount of underground facilities are buried. Accordingly, research to predict the risk of ground subsidence is continuously being conducted. This study tried to present a ground subsidence risk prediction model for two districts of ○○ city. After constructing a data set and performing preprocessing, using the property data of underground facilities in the target area (year of service, pipe diameter), density of underground facilities, and ground subsidence history data. By applying the dataset to the machine learning model, it is evaluated the reliability of the selected model and the importance of the influencing factors used in predicting the ground subsidence risk derived from the model is presented.

Analysis of Ground Subsidence Influencing Factors Using Underground Facility Property Information (지하매설물 속성정보를 활용한 지반함몰 영향인자 분석)

  • Jaemo Kang;Sungyeol Lee;Jinyoung Kim;Myeongsik Kong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.25 no.1
    • /
    • pp.5-11
    • /
    • 2024
  • Ground subsidence mainly occurs in urban areas with high population density, so it is necessary to clearly identify the cause of occurrence and prepare in advance. The main cause of ground subsidence is reported to be the creation of cavities in the ground due to damage to underground pipes, but the property information and influencing factors of underground pipes to predict and prepare for ground subsidence are not properly established. Therefore, in this study, factors showing a significant correlation with the occurrence of ground subsidence were selected among the underground facility property information and a regression equation was proposed through logistic regression analysis. For this purpose, data on underground structures and ground subsidence history information in the target area were collected, and the target area was divided into girds of 100m x 100m in size using QGIS. The underground facility attribute information and ground subsidence history information contained within the gird were extracted. Then, preprocessing was performed to construct a dataset and correlation analysis was performed. As a result, factors excluding the year of sewer pipes and communication pipes and the average depth of communication pipes, heat pipes, and gas pipes were found to have a significant correlation with ground subsidence. In addition, a regression equation for whether ground subsidence occurred in the target area is proposed through logistic regression analysis.

Study on Subsurface Collapse of Road Surface and Cavity Search in Urban Area (도심지 노면하부 지반함몰 및 공동탐사 사례 연구)

  • Chae, Hwi-Young
    • Tunnel and Underground Space
    • /
    • v.27 no.6
    • /
    • pp.387-392
    • /
    • 2017
  • Recently, road cave-ins, also referred to as ground sinking, have become a problem in urban environments. Public utility facilities such as sewage pipelines, communications pipes, gas pipes, power cables, and other types of underground structures are installed below the roads. It was reported that cave-ins are caused by the aging and lack of proper maintenance of underground facilities, as well as by construction problems. A road cave-in is first initiated by the formation of cavities typically induced by the breakage of underground pipelines. The cavities then grow and reach the base of the pavement. The traffic load applied at the surface of the roads causes an abrupt plastic deformation. This type of accident can be considered as a type of disaster. A road cave-in can threaten both human safety and the economy. It may even result in the loss of human life. In the city of Seoul, efforts to prevent damage before cave-ins occur have been prioritized, through a method of discovering and repairing joints through the 3D GPR survey.

Study on Improvement Plan of System through Analysis of Ground Sink Accidents - Focused on the management of underground facilities and their surrounding ground - (지반함몰 사고 분석을 통한 제도 개선안 연구 - 지하시설물 및 주변지반 관리 중심으로 -)

  • Kim, Dong-jin;Lee, Jong-keun;Kim, Hong-kyoon;No, Tae-kil
    • Journal of the Korea Institute of Construction Safety
    • /
    • v.3 no.1
    • /
    • pp.18-24
    • /
    • 2020
  • The purpose of this study is to propose a system improvement plan to prevent ground sinking accidents. To do this, follow the procedure below. First, it defines terms that are used interchangeably, such as ground subsidence and ground depression. Second, analysis of the current status and cause of ground sink, and the analysis of the correlation between rainfall and ground sink causes, derives priority management causes. Third, we propose a system improvement plan for the cause of priority management. As a result, damage to underground pipes and inadequate underground works were identified as the cause of priority management, and two system improvement plans to manage them were proposed. The results of this study can be used as basic data for improving the system for more effective prevention of underground sink in the future.

An Experimental Study on Recharge Well Technology for Prevention of Ground Collapse (지반함몰 방지를 위한 지하수 재주입 실험적 연구)

  • Shin, Eunchul;Park, Chunsung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.5
    • /
    • pp.35-43
    • /
    • 2017
  • It is a method of suppressing back ground subsidence by re-injecting groundwater back to the target ground and recovering the underground water level. In order to analyze the subsidence of the back ground due to maintaining the underground water level, indoor model experiments were conducted. Through this study, the factors influencing on the groundwater and the tendency of subsidence back ground by experiments were analyzed and the effect of ground subsidence by reinfusion of groundwater was also investigated. As a result of the subsidence analysis with considering only the influence of the underground water level, the settlement of the ground occurs as the underground water level at the time of ground excavation goes down. The closer to the back of the retaining wall, the maximum settlement occurred. Moreover, it was analyzed that the influence distance where subsidence occurs from retaining wall to the point of about 1.8 H on the basis of the ground collapse. The most effective location of water reinjection is the closet location to the back of braced-cut wall for reducing the groundwater down and also minimizing the ground settlement.

Filed Applicability Evaluations of Restoration Material for Underground Cavities Formed by Ground Subsidence (지반침하로 인한 지하공동 복구재료의 현장적용성 평가)

  • Bang, Seongtaek;Baek, Seungju
    • Journal of the Korean GEO-environmental Society
    • /
    • v.21 no.3
    • /
    • pp.5-11
    • /
    • 2020
  • Recently, ground pits that have been occurring frequently in urban areas are hindering traffic flow and causing property damages and loss of human life, acting as factors that are threatening the safety of citizens. Therefore, sunken ground must be quickly restored and provisions must be made for additional damage but current domestic detailed standards regarding ground pits and accurate definitions regarding causes and measures to be taken for reoccurrences are lacking. Restoration methods of sunken ground include backfilling by reusing sunken soil or other fill material and paving the road and while this is the most often used method, this only prevents ground from sinking temporarily and can not serve as a fundamental solution. Also, additional ground pits can occur on ground that is reinforced using this method due to faulty backfill material or faulty hardening. This study used Eco-friendly High-Strength Material (EHSM) as restoration material that can be used in the restoration of underground cavities that have occurred due to ground subsidence to analyze the engineered characteristics of modified dredging clay and test pieces made from changed ratios of EHSM and weathered granite soil were uniaxial compression tests were conducted and freezing-thawing tests were conducted to study strength properties according to environmental changes of restoration material, and after tests were concluded by each level, uniaxial compression tests and dynamic elasticity tests were conducted for intensity analysis. Also, to evaluate strength characteristics of the restored ground, dynamic plate load tests were conducted to verify the improvement effectiveness of the restored ground.

A Study of Ground Subsidence Risk Grade Analysis Based on Correlation Between the Underground Utility Structure Density and Recorded Ground Subsidence (지중매설물 밀집도와 이력지반함몰의 상관성 분석을 통한 위험도 등급 분석 기법에 관한 연구)

  • Choi, Changho;Kim, Jin-Young;Baek, Sung-Ha
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.9
    • /
    • pp.69-77
    • /
    • 2022
  • Several studies have been conducted to analyze the risk of ground subsidence occurring in urban areas. Recently, the correlation between the density of underground utilities (i.e., the quantity of buried utilities in the analysis area) and the recorded ground subsidence has been explored to analyze such risk through. Choi et al. (2021) proposed an algorithm to optimize the correlation between the ground subsidence and normalized linear density of underground pipelines. In this study, the optimization algorithm was modified for analysis based on the risk grade. The analysis results using the modified optimization algorithm were compared with the correlation analysis results between the density of underground utilities and recorded ground subsidence presented by Choi et al. (2021). Compared with Choi et al. (2021), three analysis results showed equal or higher accuracy in the correlation analysis with recorded ground subsidence according to risk grade. In particular, for R100, it was divided into five grades and compared with the ratio of the recorded ground subsidence that occurred in grades 4 or higher. As a result, Choi et al. (2021) showed that 86% of recorded ground subsidence occurred in grades 4 or higher, whereas this study showed 93%. It was confirmed that the accuracy of the modified optimization algorithm was improved. The modified optimization algorithm can be applied to develop a ground subsidence risk map for each grade in an urban area, which can be used as basic data for decision-making for underground utility maintenance.

Analytic Solution of Wave Propagating over Depressive Seabed (함몰지형 위를 통과하는 파의 변형에 관한 해석해)

  • Kim, Soo-Young;Lee, Seung-Oh;Jung, Tae-Hwa
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.3
    • /
    • pp.434-441
    • /
    • 2012
  • An analytic solution to the extended mild-slope equation was derived for waves propagating over an axi-symmetric pit. The water depth inside the pit was in proportion to a power of radial distance from the center of pit. The equation was transformed into the ordinary differential equation using the method of separation of variables. The coefficients of differential terms were expressed as an explicit form composing of the phase and group velocities. The bottom curvature and the square of bottom slope terms, which were added to the extended mild-slope equation, were expressed as power series. Finally, using the Frobenius series, the analytic solution to the extended mild-slope equation was derived. The present analytic solution was validated by comparing with the numerical solution obtained from FEM.

Buried contact solar cell (전극함몰형 태양전지)

  • 조은철;김동섭;이수홍
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.5 no.4
    • /
    • pp.400-407
    • /
    • 1995
  • A Abstract Buried contact solar cell is a very high efficiency silicon solar cell having over 19 % conversion effciency. In this paper, we investigated the process and characteristic of buried c contact solar cell. Manufacturing pro않sses of buried contact solar cell consist of three high temperature processes, one high vacuum deposition process, one laser application process and other wet chemical processes.

  • PDF