• Title/Summary/Keyword: 한국해양환경공학회

Search Result 540, Processing Time 0.04 seconds

Seismic Soil-Structure Interaction Analyses of LNG Storage Tanks Depending on Foundation Type (기초 형식에 따른 LNG 저장탱크의 지반-구조물 상호작용을 고려한 지진응답 분석)

  • Son, Il-Min;Kim, Jae-Min;Lee, Changho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.3
    • /
    • pp.155-164
    • /
    • 2019
  • In this study, the soil-structure interaction(SSI) effect on the seismic response of LNG storage tanks was investigated according to the type of foundation. For this purpose, a typical of LNG storage tank with a diameter of 71m, which is constructed on a 30m thick clay layer over bedrock was selected, and nonlinearity of the soil was taken into account by the equivalent linearization method. Four different types of foundations including shallow foundation, piled raft foundation, and pile foundations(surface and floating types) were considered. In addition, the effect of soil compaction in group piles on seismic response of the tank was investigated. The KIESSI-3D, which is a SSI analysis package in the frequency domain, was used for the SSI analysis. Stresses in the outer tank, and base shear and overturning moment in the inner tank were calculated. From the comparisons, the following conclusions could be made: (1) Conventional fixed base seismic responses of outer tank and inner tank can be much larger than those of considering the SSI effect; (2) The influence of SSI on the dynamic response of the inner tank and the outer tank depends on the foundation types; and (3) Change in the seismic response of the structure by soil compaction in the piled raft foundation is about 10% and its effect is not negligible in the seismic design of the structure.

Characteristics of Water Level and Velocity Changes due to the Propagation of Bore (단파의 전파에 따른 수위 및 유속변화의 특성에 관한 연구)

  • Lee, Kwang Ho;Kim, Do Sam;Yeh, Harry
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5B
    • /
    • pp.575-589
    • /
    • 2008
  • In the present work, we investigate the hydrodynamic behavior of a turbulent bore, such as tsunami bore and tidal bore, generated by the removal of a gate with water impounded on one side. The bore generation system is similar to that used in a general dam-break problem. In order to the numerical simulation of the formation and propagation of a bore, we consider the incompressible flows of two immiscible fluids, liquid and gas, governed by the Navier-Stokes equations. The interface tracking between two fluids is achieved by the volume-of-fluid (VOF) technique and the M-type cubic interpolated propagation (MCIP) scheme is used to solve the Navier-Stokes equations. The MCIP method is a low diffusive and stable scheme and is generally extended the original one-dimensional CIP to higher dimensions, using a fractional step technique. Further, large eddy simulation (LES) closure scheme, a cost-effective approach to turbulence simulation, is used to predict the evolution of quantities associated with turbulence. In order to verify the applicability of the developed numerical model to the bore simulation, laboratory experiments are performed in a wave tank. Comparisons are made between the numerical results by the present model and the experimental data and good agreement is achieved.

A Study on the Slip Behavior of Coated High Tension Bolted Joints (도장처리한 고장력볼트 연결부의 미끄러짐 특성에 관한 연구)

  • Kyung, Kab Soo;Lee, Seung Yong;Kim, Ki Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5A
    • /
    • pp.691-697
    • /
    • 2008
  • Coating the high tension bolted frictional joint has been generally allowed for anti-corrosion purpose. However in case of painting on paying surface of the high tension bolt, the influence on a slip strength of the joint depending on precision of painting has remained controversial. The study thus was intended to identify the slip behavior on high tension bolted frictional joint when applying ceramic painting, which has been currently developed. A slip test was conducted on a high tension bolted frictional joint specimen on which ceramic painting has been applied and a slip load and slip coefficient were measured. Based on result, the safety and usability of ceramic painting-applied high tension bolted frictional joint was evaluated. As a result, a difference to some extent by specimen in terms of load-displacement when a slip occurred was observed but an average slip coefficient appeared to have exceeded 0.4, which is the design frictional coefficient set forth in the specification. To secure the safety and usability of ceramic painting-applied high tension bolted frictional joint, it's necessary to establish the standard for painting as well as to revise the relevant specification.

Improving the Design-phased VE Process of Public Clients in Relation to Using Critical Success Factors (핵심성공요인과 연계한 공공발주기관의 설계VE 프로세스 개선에 관한 연구)

  • Park, Heedae;Han, Seung Heon;Kim, Sung Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.3D
    • /
    • pp.399-408
    • /
    • 2009
  • The major changes in construction environment are that construction project is bigger and more complicated and the power of construction market changes from the supplier to the client or the user. Especially public construction enterprises have advanced to introduce the value engineering (VE) which is one of the cost management based on the owner's leading at the design phase for economical efficiency and quality improvement. According to the these efforts, the implementation of VE was legislated in the revised Construction Technology Management Act in 2000, governmental agencies, local autonomies, and construction public enterprises universally has taken the VE into consideration. In this circumstance, the scope that VE construction applied at 50 billion won projects from 2003 has been extended to 10 billion won projects in 2006. Therefore, the VE construction will be activated in the future. The cost savings and function improvement, which are the purpose of VE are not only construction public enterprises, but also every public client supported from government's budget or owned by the government. Therefore, the purpose of this study is to propose the improved process and performance index of VE for governmental agencies, local autonomies, and construction public enterprises which want to introduce or improve the VE process. This research also suggested the To-be design-phased VE process model. In addition, it suggested the To-be model of design management reflected the To-be design-phased VE process model, which is eliminated two problems reflected for the performance improvement of the As-is model of design management.

Removal of Nitrogens and Phosphorus by Bacillus sp. CK-11 and Bacillus sp. CK-13 Isolated from Shrimp Farming Pond (새우양식장에서 분리한 Bacillus sp. CK-10과 Bacillus sp. CK-13에 의한 질소와 인의 제거)

  • Chun Jae-Woo;Ma Chae-Woo;Lee Sang-Hyun;Oh Kye-Heon
    • KSBB Journal
    • /
    • v.20 no.2 s.91
    • /
    • pp.116-122
    • /
    • 2005
  • The feasibility of using bacterial cultures with the ultimate aim for the marine environmental clean-up was explored. The present study reports on the bacterial elimination of nitrogens and phosphorus by strains CK-10 and CK-13 isolated from shrimp farming pond. The strains were identified as genus Bacillus on the basis of BIOLOG test, and designated as Bacillus sp. CK-10 and Bacillus sp. CK-13, respectively. Removal of nitrogens $(NH_4^+,\;NO_2^-,\;or\;NO_3^-)$ or phosphorus $(PO_4^{-3})$ as single N or P source was studied with single cultures under aerobic conditions. Complete elimination of all nitrogens in the concentration range of $100-400{\mu}M$ was achieved in single cultures as well as co-cultures within the given incubation period. Similar results were obtained from the test cultures containing $125-599{\mu}M\;PO_4^{3-}$. Simultaneous removal of all N/P was monitored in the co-cultures. As the results, $400{\mu}M\;NH_4^+\;and\;NO_2^-$ were eliminated within 12hrs and $400{\mu}M\;NO_3^-\;and\;500{\mu}M\;PO_4^{-3}$ were completely disappeared within 36 hrs from the media. The work demonstrated that co-cultures improved the concurrent removal of N/P from the media.

Conditions for Stable light Production of Recombinant Escherichia coli Containing Lux Operon and Sensitivity to Toxic Chemicals (Lux operon을 함유한 유전자 재조합 Escherichia coli의 발광 안정화 조건 및 독성물질에 대한 민감성)

  • 배희경;이상민;정윤철;송방호;신평균
    • KSBB Journal
    • /
    • v.17 no.6
    • /
    • pp.571-576
    • /
    • 2002
  • Recombinant E. coli DH5 ${\alpha}$/pSB311 was made by cloning the genes encoding bacterial luciferase and aldehyde substrate proteins from Photohabdus luminescense, to complement defects of Lumistox, which is normally used in bioassays to monitor toxic substances in water environmental systems. The conditions for stable light production by the recombinant strains were investigated with respect to cell growth stage, cell number, and buffer conditions. The optimum growth stage was a middle-exponential stage with an OD$_{660nm}$ value of 0.6-0.7. ADout 10$^{6}$-10$^{7}$ cells per test tube was optimum for stable light emission. The effect of buffer was not significant if an optimum viable cell number was maintained. The bioluminescence of the recombinant E. coli harboring the lux operon of Photohabdus luminescense was not affected by temperature, while the bioluminescence of Lumistox was temperature sensitive. The recombinant E. coli was more sensitive to heavy metals (Cd, Cu, Hg, Zn) than Lumistox, because it does not require high concentrations of NaCl in the buffer.

Carbon Dioxide-based Plastic Pyrolysis for Hydrogen Production Process: Sustainable Recycling of Waste Fishing Nets (이산화탄소 기반 플라스틱 열분해 수소 생산 공정: 지속가능한 폐어망 재활용)

  • Yurim Kim;Seulgi Lee;Sungyup Jung;Jaewon Lee;Hyungtae Cho
    • Korean Chemical Engineering Research
    • /
    • v.62 no.1
    • /
    • pp.36-43
    • /
    • 2024
  • Fishing net waste (FNW) constitutes over half of all marine plastic waste and is a major contributor to the degradation of marine ecosystems. While current treatment options for FNW include incineration, landfilling, and mechanical recycling, these methods often result in low-value products and pollutant emissions. Importantly, FNWs, comprised of plastic polymers, can be converted into valuable resources like syngas and pyrolysis oil through pyrolysis. Thus, this study presents a process for generating high-purity hydrogen (H2) by catalytically pyrolyzing FNW in a CO2 environment. The proposed process comprises of three stages: First, the pretreated FNW undergoes Ni/SiO2 catalytic pyrolysis under CO2 conditions to produce syngas and pyrolysis oil. Second, the produced pyrolysis oil is incinerated and repurposed as an energy source for the pyrolysis reaction. Lastly, the syngas is transformed into high-purity H2 via the Water-Gas-Shift (WGS) reaction and Pressure Swing Adsorption (PSA). This study compares the results of the proposed process with those of traditional pyrolysis conducted under N2 conditions. Simulation results show that pyrolyzing 500 kg/h of FNW produced 2.933 kmol/h of high-purity H2 under N2 conditions and 3.605 kmol/h of high-purity H2 under CO2 conditions. Furthermore, pyrolysis under CO2 conditions improved CO production, increasing H2 output. Additionally, the CO2 emissions were reduced by 89.8% compared to N2 conditions due to the capture and utilization of CO2 released during the process. Therefore, the proposed process under CO2 conditions can efficiently recycle FNW and generate eco-friendly hydrogen product.

Characteristics of Recent Foraminifera and Surface Sediments in Gomso- Bay Tidal Flat, West Coast of Korea: Potential for Paleoenvironmental Interpretations (곰소만 조간대의 현생 유공충과 표층 최적물의 특성: 고환경 해석에 적용 가능성)

  • 우한준;장진호
    • 한국해양학회지
    • /
    • v.30 no.3
    • /
    • pp.184-196
    • /
    • 1995
  • The line-SW is located in the mouth of Gomso Bay (20 Km long and 5-8 Km wide),west coast of Korea. This area is composed of sand flat, mud flat, sand shoal and chenier, The difference of physical, geological and geomorphic conditions in subenvironments of the bay may control and produce distingtive foraminiferal populations and assemblages. This study investigates whether five a priori subenvironments (five local zonations) in Gomso-Bay tidal flat can be distinguished from each other on the basis of total (living plus dead) foraminiferal assemblages. Seventy-four species (67 benthic; 7 planktonic) were recorded in total assemblages of surface sediments from 10 stations. Ammonia beccarii tepida, Discorbis candeiana, Elphidium etigoense and Eponides nipponicus were most dominant species in living and total assemblages. The relative abundance (%) of living population was high at upper flat and decreased from upper to lower flat. The low percentages of living populations in middle to lower flat are probably influenced by the decreasing reproduction of foraminifera caused by high energy condition and addition of dead species from offshore. The occurence of planktonic foraminifera in middle to lower flat (5.3∼6.6%) indicates introduction of planktonic foraminifera from offshore by storm and/or tidal current. The relatively high numbers of species in lower middle to lower flat are probably caused by a mixing of faunas from these areas and offshore. The high numbers of total individuals per 50 ml of sediment in upper flat indicate that this area is a relatively stable environment where waves and currents are protected by the chenier. Five biofacies of the total foraminiferal assemblages were established on the basis of dominant species (those representing more than 20% of the total assemblages in any station) in the five a priori subenvironments recognized along the Line-SW transect in Gomso-Bay tidal flat. Five biofacies are potentially useful in paleoenvironmental interpretation in late Quaternary Gomso-Bay tidal deposits.

  • PDF

Estimate and Environmental Assessment of Greenhouse Gas(GHG) Emissions and Sludge Emissions in Wastewater Treatment Processes for Climate Change (기후변화를 고려한 하수처리공법별 온실가스 및 슬러지 배출량 산정 및 환경성 평가)

  • Oh, Tae-Seok;Kim, Min-Jeong;Lim, Jung-Jin;Kim, Yong-Su;Yoo, Chang-Kyoo
    • Korean Chemical Engineering Research
    • /
    • v.49 no.2
    • /
    • pp.187-194
    • /
    • 2011
  • In compliance with an international law about the ocean dumping of the sludge, the proper sewage treatment process which occurs from the wastewater treatment process has been becoming problem. Generally the sewage and the sludge are controlled from anaerobic condition when the sewage is treated and land filled, where the methane$(CH_{4})$ and the nitrous oxide $(N_{2}O)$ from this process are discharged. Because these gases have been known as one of the responsible gases for global warming, the wastewater treatment process is become known as emission sources of green house gases(GHG). This study is to suggest a new approach of estimate and environmental assessment of greenhouse gas emissions and sludge emissions from wastewater treatment processes. It was carried out by calculating the total amounts of GHG emitted from biological wastewater treatment process and the amount of the sludgegenerated from the processes. Four major biological wastewater treatment processes which are Anaerobic/Anoxic/Oxidation$(A_{2}O)$, Bardenpho, Virginia Initiative Plant(VIP), University of Cape Town(UCT)are used and GPS-X software is used to model four processes. Based on the modeling result of four processes, the amounts of GHG emissions and the sludge produced from each process are calculated by Intergovernmental Panel on Climate Change(IPCC) 2006 guideline report. GHG emissions for water as well as sludge treatment processes are calculated for environmental assessment has been done on the scenario of various sludge treatments, such as composting, incineration and reclamation and each scenario is compared by using a unified index of the economic and environmental assessment. It was found that Bardenpho process among these processes shows a best process that can emit minimum amount of GHG with lowest impact on environment and composting emits the minimum amount of GHG for sludge treatment.

Computational Fluid Dynamics Study of Channel Geometric Effect for Fischer-Tropsch Microchannel Reactor (전산유체역학을 이용한 Fischer-Tropsch 마이크로채널 반응기의 채널 구조 영향 분석)

  • Na, Jonggeol;Jung, Ikhwan;Kshetrimayum, Krishnadash S.;Park, Seongho;Park, Chansaem;Han, Chonghun
    • Korean Chemical Engineering Research
    • /
    • v.52 no.6
    • /
    • pp.826-833
    • /
    • 2014
  • Driven by both environmental and economic reasons, the development of small to medium scale GTL(gas-to-liquid) process for offshore applications and for utilizing other stranded or associated gas has recently been studied increasingly. Microchannel GTL reactors have been prefrered over the conventional GTL reactors for such applications, due to its compactness, and additional advantages of small heat and mass transfer distance desired for high heat transfer performance and reactor conversion. In this work, multi-microchannel reactor was simulated by using commercial CFD code, ANSYS FLUENT, to study the geometric effect of the microchannels on the heat transfer phenomena. A heat generation curve was first calculated by modeling a Fischer-Tropsch reaction in a single-microchannel reactor model using Matlab-ASPEN integration platform. The calculated heat generation curve was implemented to the CFD model. Four design variables based on the microchannel geometry namely coolant channel width, coolant channel height, coolant channel to process channel distance, and coolant channel to coolant channel distance, were selected for calculating three dependent variables namely, heat flux, maximum temperature of coolant channel, and maximum temperature of process channel. The simulation results were visualized to understand the effects of the design variables on the dependent variables. Heat flux and maximum temperature of cooling channel and process channel were found to be increasing when coolant channel width and height were decreased. Coolant channel to process channel distance was found to have no effect on the heat transfer phenomena. Finally, total heat flux was found to be increasing and maximum coolant channel temperature to be decreasing when coolant channel to coolant channel distance was decreased. Using the qualitative trend revealed from the present study, an appropriate process channel and coolant channel geometry along with the distance between the adjacent channels can be recommended for a microchannel reactor that meet a desired reactor performance on heat transfer phenomena and hence reactor conversion of a Fischer-Tropsch microchannel reactor.