• Title/Summary/Keyword: 한국자동차안전기준

Search Result 154, Processing Time 0.022 seconds

A Study on Speech Recognition in a Running Automobile (주행중인 자동차 환경에서의 음성인식 연구)

  • 양진우;김순협
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.5
    • /
    • pp.3-8
    • /
    • 2000
  • In this paper, we studied design and implementation of a robust speech recognition system in noisy car environment. The reference pattern used in the system is DMS(Dynamic Multi-Section). Two separate acoustic models, which are selected automatically depending on the noisy car environment for the speech in a car moving at below 80km/h and over 80km/h are proposed. PLP(Perceptual Linear Predictive) of order 13 is used for the feature vector and OSDP (One-Stage Dynamic Programming) is used for decoding. The system also has the function of editing the phone-book for voice dialing. The system yields a recognition rate of 89.75% for male speakers in SI (speaker independent) mode in a car running on a cemented express way at over 80km/h with a vocabulary of 33 words. The system also yields a recognition rate of 92.29% for male speakers in SI mode in a car running on a paved express way at over 80km/h.

  • PDF

A Study on the Weight Optimization for the Passenger Car Seat Frame Part (상용승용차 시트프레임 부품의 중량 최적화에 관한 연구)

  • Jang, In-Sik;Min, Byeong-Jo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.5
    • /
    • pp.155-163
    • /
    • 2006
  • Car seat is one the most important element to make comfortable drivability. It can absorb the impact or vibration during driving state. In addition to those factors, it is needed to have enough strength for passenger safety. From energy efficiency and environmental point of view lighter passenger car seat frame becomes hot issue in the auto industry. In this paper, weight optimization methodology is investigated for commercial car seat frame using CAE. Optimized designs for seat frame are developed using commercially available finite element code(ANSYS) and design of experiment method. At first, car seat frame is modelled using 3-D computer aided design tool(CATIA) and simplified for finite element modelling. Finite element analysis is carried out for the case of FMVSS 202 Head Restraint test to check the strength of the original seat frame. Two base brackets are selected as optimized elements that are the heaviest parts in the seat frame. After finite element analysis for the brackets with similar load condition to the previous test optimization technique is applied for 10% to 50% weight reduction. Design of experiment is utilized to obtain optimization design for the bracket based on the modified 50% weight reduction model in which outer shape of the bracket is conserved. Weight optimization models result in the decrease of the strength in spite of weight reduction. The more design points should be considered to get better optimized model. The more advanced optimization technique may be utilized for more parts of the seat frame to increase whole seat frame characteristics in the future.

Directed Graph를 이용한 경제 모형의 접근 - Crandall의 탑승자 사망 모형에 관한 수정- ( Directed Graphical Approach for Economic Modeling : A Revision of Crandall's Occupant Death Model )

  • Roh, J.W.
    • Journal of Korean Port Research
    • /
    • v.12 no.1
    • /
    • pp.55-64
    • /
    • 1998
  • Directed graphic algorithm was applied to an empirical analysis of traffic occupant fatalities based on a model by Crandall. In this paper, Crandall's data on U.S. traffic fatalities for the period 1947-1981 are focused and extended to include 1982-1993. Based on the 1947-1981 annual data, the directed graph algorithms reveal that occupant traffic deaths are directly caused by income, vehicle miles, and safety devices. Vehicle mileage is caused by income and rural driving. The estimation is conducted using three stage least squares regression. Those results show a difference between the traditional regression methodology and causal graphical analysis. It is also found that forecasts from the directed graph based model outperform forecasts from the regression-based models, in terms of mean squared forecasts error. Furthermore, it is demonstrates that there exists some latent variables between all explanatory variables and occupant deaths.

  • PDF

A study on Shock Absorption Performance of Reused Bumper for Passenger Cars (승용차(乘用車) 재활용(再活用) 범퍼의 충격흡수(衝擊吸收) 성능(性能)에 관(關)한 연구(硏究))

  • Kim, Jee-Won;Lee, Chang-Sik
    • Resources Recycling
    • /
    • v.18 no.1
    • /
    • pp.44-51
    • /
    • 2009
  • The purpose of this study is to investigate the performance of shock absorption of recycled bumper applied to the standard of shock absorption for newly-developed bumper. For the experiment, two different passenger cars which have different types of bumper were selected. In this work, two kinds of reused bumpers were tested in accordance with an automotive safety regulation to verify exterior bumpers' impact energy absorption performance. The performance results of reused bumper test show that the shock absorption performance indicated the almost same performance and similar characteristics of 2.5 miles bumper test compared to the absorption performance of new bumper of test vehicles.

Characteristics of Vehicle Structure Deformation and Body Injury caused by Side Impact Test using AE-MDB (AE-MDB 시험결과에 따른 인체상해 및 차체 특성)

  • Kim, Doyup;Lee, Jaewan;Chang, Hyungjin;Yong, Boojoong
    • Journal of Auto-vehicle Safety Association
    • /
    • v.3 no.2
    • /
    • pp.34-41
    • /
    • 2011
  • Side collisions (or side crash) account for 51.6% of all car to car accidents occurred in 2010. It is necessary to analyze those vehicles' structure deformation and passengers' injuries in the side collisions. A moving barrier (950kg) is currently used in the KNCAP side impact test. However, in order to enhance a passengers' safety in the side collisions, we introduce an AE-MDB (1500kg) which provides more severe conditions for this test. In this study, the test results using both barriers are compared and analyzed.

Proposal for Using Sine with Dwell for the Evaluation of ESC for Medium Commercial Vehicles (중형 상용차량 ESC 평가를 위한 Sine with Dwell Test 제안)

  • Kwon, Baeksoon;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.7 no.2
    • /
    • pp.32-38
    • /
    • 2015
  • A sine with dwell test is well known as a test scenario for evaluation of performance of electronic stability control(ESC) on passenger vehicles and heavy commercial vehicles. However, when it comes to ESC for medium commercial vehicles, the test scenario has not been established yet. In this paper, the sine with dwell test was modified considering characteristics of medium commercial vehicles. The three main modifications of the original test scenario are the steering angle level, steering frequency, and loading condition of the vehicle. These modifications are derived from simulation study for different medium commercial vehicles. From simulation study, it was shown that the ESC system for medium commercial vehicle is objectively evaluated by the proposed test scenario. A clear improvement on vehicle stability was seen in the results when ESC system was used.

CAE based risk prediction for sharp edge improvement (샤프엣지 개선을 위한 해석적 리스크 검토법)

  • Nam, Byeung Gun;Park, Shin Hee;Kim, Hyun Sup
    • Journal of Auto-vehicle Safety Association
    • /
    • v.6 no.2
    • /
    • pp.36-42
    • /
    • 2014
  • In order to prevent the sharp edge during the side impact, a cause analysis and CAE based risk prediction were carried out in this study. It was found that sharp edge occurs mainly because of stiffness difference between the major parts and structural stress concentration. It could be improved by directly reinforcing the crack initiation region or by weakening the joints connecting the parts. The fracture criterion based on major in-plain strain was suggested and the risk prediction process for sharp edge prevention was established.

A Study on the Improvement and the Survey Study on the Complaints of People with Disabilities in the Use of Disabled Car (복지차 이용 시 장애인의 불편사항 조사와 개선방안 연구)

  • Rhee, Kum Min;Kim, Dong Ok
    • 재활복지
    • /
    • v.17 no.4
    • /
    • pp.339-370
    • /
    • 2013
  • This study is to suggest necessary improvements of inconvenient elements as well as the ergonomic design standard to develop disabled cars by evaluating the types of needs and observing the behavior characteristics on their car use and the survey on the complaints of the disabled drivers and their guardians in the use of disabled car. The results of this study are as follows. First, both the disabled drivers and their guardians are found to feel high inconvenience and low satisfaction with the cars they use now. Second, the disabled owner-drivers also answered in a same way as guardians. They find the most difficulty in moving the supporting equipment to get into and out of a car. Both the owner-drivers with disabilities and guardians complained of lack of handiness they face when they wear the seat belts and sitting on the seats. In view of this, a disabled car to be developed should have ergonomic design for its seats and the safety of the seatbelt as well as trouble-free supporting equipment helping them move. Third, rather than owner-drivers with handicaps, guardians expressed more difficulties and less contentment with the cars for the disabled, which is reckoned to lead to the changes of perspectives on development of cars for the disabled breaking away from existing viewpoints focusing on the accessibility to the vehicles. Fourth, both owner-drivers and guardians showed higher interests in driving and other safety and convenience measures than in using supporting equipment to get into and out of vehicles, implying that rather than the accessibility to get into and out of a car, convenience should primarily be taken into account for the design of the disabled car. Fifth, the auto-manufacturer is to give prior thought to user convenience when developing a car in practice. For this, the developer may have the disabled car users join the process of development as well as asking experts for help and participation.

Analysis of Factors Affecting the Take-over Time of Automated Vehicles Using a Meta-analysis (메타분석을 이용한 자율주행차 제어권 전환 소요시간 영향요인 도출)

  • Lee, Kyeongjin;Park, Sungho;Park, Giok;Park, Jangho;Yun, Ilsoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.4
    • /
    • pp.167-189
    • /
    • 2022
  • In the case of SAE autonomous driving levels 2 and 3, since complete autonomous driving is impossible, the take-over process is essential, and take-over time(TOT) is the most important factor in determining the safety of the autonomous driving system. Accordingly, research on TOT is being actively conducted, but each research is independently conducted and general conclusions that integrate various research results are required. Therefore, in this study, the factors affecting TOT were analyzed using meta-analysis, which integrates the results of individual studies and presents an integrated opinion. As a result of meta-analysis, a total of 10 influencing factors were selected, and most of them were related to the non-driving related task(NDRT) type. In addition, implications for the future research direction of take-over and NDRT were presented.

Operational Design Domain for Testing of Autonomous Shuttle on Arterial Road (도시부 자율주행셔틀 실증을 위한 운행설계영역 분석: 안양시를 중심으로)

  • Kim, Hyungjoo;Lim, Kyungil;Kim, Jaehwan;Son, Woongbee
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.2
    • /
    • pp.135-148
    • /
    • 2020
  • The ongoing development of autonomous driving-related technology may cause different kinds of accidents while testing new changes. As a result, more information on ODD suitable for the domestic road environment will be necessary to prevent safety accidents. Besides, implementation of the Autonomous Vehicle Act will increase autonomous driving demonstrations on roads currently in use. This study describes an ODD for demonstrating an autonomous driving shuttle in downtown areas. It addresses a possible scenario of autonomous driving around a downtown road in Anyang. Geometric, operational, and environmental factors are considered while maintaining a domestic road environment and safety. Autonomous driving shuttles are demonstrated in 30 nodes, each identified by node type and signal-communication. Link criteria are an autonomous driving restriction in 42 morning peak (8-9am) hours, 39 non-peak (12-13pm) hours, and 40 afternoon peak (18-19pm) hours. In the future, conclusions may be considered for preliminary safety assessments of roads where autonomous driving tests are performed.