• Title/Summary/Keyword: 한국이미지

Search Result 12,825, Processing Time 0.052 seconds

GAN-based Dance Performance Visual Background Generation Method using Emotion Analysis on Lyrics (가사의 감정 분석을 이용한 GAN 기반 댄스 공연 배경 생성 방법)

  • Yoon, Hyewon;Kwak, Jeonghoon;Sung, Yunsick
    • Annual Conference of KIPS
    • /
    • 2020.05a
    • /
    • pp.530-531
    • /
    • 2020
  • 최근 인공지능을 활용하여 예술 작품에 몰입할 수 있도록 무대 효과를 디자인하는 연구가 진행되고 있다. 무대 효과 중에서 무대 배경은 공연의 분위기를 형성한다. 춤의 장르별로 무대 배경에 사용되는 이미지를 생성하기 위해 소셜 미디어 기반 무대 배경 생성 시스템이 있다. 하지만 같은 장르 춤은 동일한 무대 배경 이미지가 제공되는 문제가 있다. 같은 장르의 춤이지만 노래의 분위기를 반영하여 차별된 무대 배경 이미지를 제공하는 것이 필요하다. 본 논문은 노래 가사의 감정을 활용하여 Generative Adversarial Network(GAN)을 통해 각 노래의 분위기를 고려한 무대 배경 이미지를 생성하는 방법을 제안한다. GAN은 노래에 포함된 단락별 감정 단어를 추출하여 스타일을 생성하도록 학습된다. 학습된 GAN은 노래 가사에 포함된 감정 단어를 활용하여 곡의 분위기를 반영한 무대 배경 이미지를 생성한다. 노래 가사를 고려하여 무대 배경 이미지를 생성함으로써 곡의 분위기가 고려된 무대 배경 이미지 생성이 가능하다.

Synthetic data generation technique using object bounding box and original image combination (객체 바운딩 박스와 원본 이미지 결합을 이용한 합성 데이터 생성 기법)

  • Ju-Hyeok Lee;Mi-Hui Kim
    • Annual Conference of KIPS
    • /
    • 2023.05a
    • /
    • pp.476-478
    • /
    • 2023
  • 딥러닝은 컴퓨터 비전의 상당한 발전을 기여했지만, 딥러닝 모델을 학습하려면 대규모 데이터 세트가 필요하다. 이를 해결하기 위해 데이터 증강 기술이 주목받고 있다. 본 논문에서는 객체 추출 바운딩 박스와 원본 이미지의 바운딩 박스를 결합하여 합성 데이터 생성기법을 제안한다. 원본 이미지와 동일한 범주의 데이터셋에서 참조 이미지의 객체를 추출한 다음 생성 모델을 사용하여 참조 이미지와 원본 이미지의 특징을 통합하여 새로운 합성 이미지를 만든다. 실험을 통해, 생성 기법을 통한 딥러닝 모델의 성능향상을 보여준다.

A hash-based matching scheme for shape-based image retrieval (외형 기반 이미지 검색을 위한 해시 기반 검색 기법)

  • Yoon-Sik Tak;Eenjun Hwang;Hong-Keun Choi
    • Annual Conference of KIPS
    • /
    • 2008.11a
    • /
    • pp.328-331
    • /
    • 2008
  • 많은 양의 이미지를 포함하고 있는 대용량 데이터베이스에 대한 이미지 검색에서 보다 짧은 시간에 적은 양의 검색공간을 사용하면서 원하는 결과를 얻을 수 있는 이미지 인덱싱 기법에 대한 다양한 연구가 진행되어 왔다. 본 논문에서는 외형 기반의 이미지 검색에서 기존의 인덱싱 기법보다 빠른 검색을 지원할 수 있는 해시 기반의 새로운 인덱싱 기법을 제안한다. 기존의 해시 기반 인덱싱 기법에서는 해시 주소 계산을 위해 인덱스 값의 범위가 미리 정해져야 하기 때문에 색상 정보 등 소수의 특징 정보를 제외하고는 인덱싱에 널리 사용되지 못하고 있다. 한편, 제안된 해시 구조는 값의 범위가 정해지지 않은 정수형의 인덱스 값을 기반으로 효과적으로 이미지 인덱스를 구축할 수 있다. 효과적인 이미지 검색을 위해 제안된 인덱스를 기반한 범위검색(Range Search) 기법을 제안하였으며, 실험을 통해 제안된 인덱스 구조에서의 범위 검색이 기존의 인덱스 구조에 비해 보다 효과적임을 보인다.

Implementation of a YOLO-based Door Object Detection System for Autonomous Algorithm Robots (자율 배송 로봇을 위한 YOLO 기반 문 객체 탐지 알고리즘 구현)

  • YeChan Park;SungJoon Cho;GangMin Lee;SungHyeon Jo;Hyung-Hoon Kim;Hyeon-min Shim
    • Annual Conference of KIPS
    • /
    • 2023.11a
    • /
    • pp.561-562
    • /
    • 2023
  • 본 논문에서는 YOLOv5m과 이미지 전처리 기법을 활용한 문 객체 감지 시스템을 제안한다. 이미지 전처리를 하지 않은 Original 이미지 그리고 이미지 전처리를 한 CLAHE 이미지, Bilateral 이미지 세 가지를 사용해서 가장 좋은 기법을 비교한다. mAP 진행 그래프 및 이미지 출력을 통해 결과를 검증한다. 본 논문의 목표는 인공지능이 문을 감지하는 알고리즘을 구현하여 배송 로봇이 목적지의 문을 찾아내는 것이다

Image Enhancement for Characters Recognition Printed from Stone (탁본된 금석문 인식을 위한 이미지 개선)

  • Rhee, Keun-Moo
    • Annual Conference of KIPS
    • /
    • 2008.05a
    • /
    • pp.76-79
    • /
    • 2008
  • 선사 이래 인류의 대표적 고대 문화유산의 하나가 금석문이다. 이런 금석문들은 다양한 과학적 기법들로 그 원 형태를 인식하고자 하는 노력을 하고 있다. 그러나 가장 오래되고 유용한 보존과 인식 방법은 탁본에 의한 것이다. 그러나 원 자료의 심각한 훼손으로 탁본자료의 형상 인식이나 문자 인식은 일반적인 이미지 복원 방법과는 다양한 면에서 차이를 보이고 있어 이의 노이즈를 제거하고 원이미지를 복원하여 형상을 인식하는 것이 중요하다. 이러한 탁본의 판독에는 다양한 잡음들이 있어 이를 전문적인 판독가 들도 이설을 제기하는 경우들이 있다. 다양하고 심각한 훼손 상태에 있는 탁본의 이미지들은 다양한 형태의 심각한 노이즈를 가지고 있어 전통적이고 일반적인 이미지 향상이나복원 기법들을 적용하기에 적절하지가 않다. 본 연구에서는 구름이나 야간 상황 등 다양한 노이즈를 가진 SAR 이미지처리 기법과 다양한 환자들의 다양한 병적 상태의 이미지들에 효과적으로 적용되는 방법들을 살펴 탁본 문자인식에 적용하고 그 효과를 히스토그램과 이미지 엔트로피를 이용하여 측정하고자 하였다.

G-Render: Grid-based Image Processing System (G-Render: 그리드 기반 이미지 처리 시스템)

  • Kim, Eunsung;Jung, Im Young;Choi, Hyung Jun;Yeom, Heon-Young
    • Annual Conference of KIPS
    • /
    • 2007.11a
    • /
    • pp.690-692
    • /
    • 2007
  • 기존의 2 차원 이미지를 통한 세포 분석은 단지 세포의 단면만을 볼 수 있기 때문에 정확한 구조를 파악하기 힘들다. 본 논문에서는 그리드 기술을 이용하여 2 차원 이미지들을 세포 구조에 대한 더욱 정확한 이해 및 연구 능률의 향상을 도모할 수 있는 3 차원 이미지로 재구성하는 시스템을 개발하였다. 이 시스템은 고성능 이미지 처리를 위해서 계산 그리드를 이용하며, 화질 개선을 위한 전처리 기술, 자동 영상 정렬 기술, 효과적인 삼차원 재구성 기술과 같은 다양한 이미지 처리 알고리즘 및 preStageIn, BgUpload, delegated preprocessing 등과 같은 데이터 전송 최적화 기술 등을 제공한다. 또한, 다양한 이미지 뷰어 기능 및 DirectX 를 이용한 3 차원 렌더링 기능을 제공한다.

Image Processing Technique to Mitigate One-Pixel Attack (단일 픽셀 공격을 완화하기 위한 이미지 처리 기법)

  • Yeon-Ji Lee;Il-Gu Lee
    • Annual Conference of KIPS
    • /
    • 2024.05a
    • /
    • pp.317-320
    • /
    • 2024
  • 최근 이미지 분류, 자율 주행 등 다양한 분야에 인공지능 기술이 접목됨에 따라 인공지능 기술을 이용한 새로운 위협이 등장하고 있다. 적대적 공격 중 단일 픽셀 공격은 이미지의 픽셀 하나를 왜곡하여 인공지능의 올바른 분류를 방해하는 공격 기법이다. 본 논문은 단일 픽셀 공격을 완화하는 이미지 처리 기법을 제안한다. 실험 결과에 따르면 제안한 방법을 적용하면 이미지의 사이즈를 27×27 로 조절하였을 때 100 개의 단일 픽셀 공격 이미지 중 94 개를 복구하였으며, 이미지의 신뢰도를 68.89% 개선하였다.

Interpolation of Color Image Scales (칼라 이미지 스케일의 보간)

  • Kim, Sung-Hwan;Jeong, Sung-Hwan;Lee, Joon-Whoan
    • Science of Emotion and Sensibility
    • /
    • v.10 no.3
    • /
    • pp.289-297
    • /
    • 2007
  • Color image scale captures the knowledge of colorists and represents both adjectives and colors in the same adjective image scales in order to select color(s) corresponding to an adjective. Due to the difficulty of psychological experiment and statistical analysis, in general, only a limited number of colors are located in the color image scales. This can make color selection process hard especially to non-expert. In this paper, we propose an interpolation of color image scale based on the fuzzy K-nearest neighbor method, which provides continuous colors according to the coordinates of the image scales. The experimental results show that the interpolated image scales can be practically useful for color selection process.

  • PDF

Image generation and classification using GAN-based Semi Supervised Learning (GAN기반의 Semi Supervised Learning을 활용한 이미지 생성 및 분류)

  • Doyoon Jung;Gwangmi Choi;NamHo Kim
    • Smart Media Journal
    • /
    • v.13 no.3
    • /
    • pp.27-35
    • /
    • 2024
  • This study deals with a method of combining image generation using Semi Supervised Learning based on GAN (Generative Adversarial Network) and image classification using ResNet50. Through this, a new approach was proposed to obtain more accurate and diverse results by integrating image generation and classification. The generator and discriminator are trained to distinguish generated images from actual images, and image classification is performed using ResNet50. In the experimental results, it was confirmed that the quality of the generated images changes depending on the epoch, and through this, we aim to improve the accuracy of industrial accident prediction. In addition, we would like to present an efficient method to improve the quality of image generation and increase the accuracy of image classification through the combination of GAN and ResNet50.

The Effect of Service Quality of Farm Party on Cognitive and Emotional Images of the Farmhouse and Revisit Intention (팜파티 서비스 품질이 팜파티 농가의 인지적 이미지와 정서적 이미지, 재방문 의도에 미치는 영향)

  • Kim, Na-Hyung;Kwon, Ki-Joon
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.10
    • /
    • pp.72-84
    • /
    • 2017
  • This study aims to investigate how the service quality of a farm party affects the cognitive and emotional images of the farmhouse and revisit intentions by designing a research model and testing hypotheses. First, findings of the test show that when it comes to service quality, the physical environment and program contents of farm party have an effect on the cognitive image of the farmhouse while the qualification of party operators does not. Second, the physical environment of the party and party operator's qualification affect the emotional image but the program contents has no effect. Third, The cognitive and emotional images have an effect on the revisit intentions. It is certain that the farm party serves as cultural contents facilitating the rural economy and an emerging business model in the rural tourism. When we approach the farm party as a business model to provide service, not cultural contents as party, however, farmhouses may build a positive image as a new tourist destination and also see their economy facilitated. This study looks into Seoul and Gyeonggi areas and thus is geographically limited and does not cover national phenomenon.