• Title/Summary/Keyword: 한국광기술원

Search Result 433, Processing Time 0.03 seconds

An Experimental Study to develope the Subsidence Equation for Riprap Protection around the Pier (교각에 설치된 사석보호공의 침하량 산정식 도출에 관한 실험 연구)

  • Ji, Un;Yeo, Woon Kwang;Lee, Won Min;Kang, Joon Gu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1B
    • /
    • pp.63-71
    • /
    • 2009
  • Riprap filter should be installed around the pier to prevent riprap subsidence due to sediment winnowing or leaching between the riprap and bed layers. However, riprap protection without filters is commonly applied in the field because of ambiguous specifications and technical and economical difficulties to install the filter layer. Therefore, the hydraulic experiments were conducted in this study to measure and analyze the riprap subsidence quantitatively with different conditions for thickness of riprap layer, approached velocity, sizes of riprap and bed material. As the velocity was increased and size of bed material and thickness of riprap layer were decreased, the subsidence was increased. Consequently, the dimensionless riprap subsidence equation was derived using the synthesized experimental results. The results of this study could be employed as a standard criterion or predictor to evaluate the subsidence stability.

Development of relative radiometric calibration system for in-situ measurement spectroradiometers (현장관측용 분광 광도계의 상대 검교정 시스템 개발)

  • Oh, Eunsong;Ahn, Ki-Beom;Kang, Hyukmo;Cho, Seong-Ick;Park, Young-Je
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.4
    • /
    • pp.455-464
    • /
    • 2014
  • After launching the Geostationary Ocean Color Imager (GOCI) on June 2010, field campaigns were performed routinely around Korean peninsula to collect in-situ data for calibration and validation. Key measurements in the campaigns are radiometric ones with field radiometers such as Analytical Spectral Devices FieldSpec3 or TriOS RAMSES. The field radiometers must be regularly calibrated. We, in the paper, introduce the optical laboratory built in KOSC and the relative calibration method for in-situ measurement spectroradiometer. The laboratory is equipped with a 20-inch integrating sphere (USS-2000S, LabSphere) in 98% uniformity, a reference spectrometer (MCPD9800, Photal) covering wavelengths from 360 nm to 1100 nm with 1.6 nm spectral resolution, and an optical table ($3600{\times}1500{\times}800mm^3$) having a flatness of ${\pm}0.1mm$. Under constant temperature and humidity maintainance in the room, the reference spectrometer and the in-situ measurement instrument are checked with the same light source in the same distance. From the test of FieldSpec3, we figured out a slight difference among in-situ instruments in blue band range, and also confirmed the sensor spectral performance was changed about 4.41% during 1 year. These results show that the regular calibrations are needed to maintain the field measurement accuracy and thus GOCI data reliability.

Recent Research Trends of Supercapacitors for Energy Storage Systems (에너지 저장시스템을 위한 슈퍼커패시터 최신 연구 동향)

  • Son, MyungSuk;Ryu, JunHyung
    • Clean Technology
    • /
    • v.27 no.4
    • /
    • pp.277-290
    • /
    • 2021
  • A supercapacitor, also called an ultracapacitor or an electrochemical capacitor, stores electrochemical energy by the adsorption/desorption of electrolytic ions or a fast and reversible redox reaction at the electrode surface, which is distinct from the chemical reaction of a battery. A supercapacitor features high specific power, high capacitance, almost infinite cyclability (~ 100,000 cycle), short charging time, good stability, low maintenance cost, and fast frequency response. Supercapacitors have been used in electronic devices to meet the requirements of rapid charging/discharging, such as for memory back-up, and uninterruptible power supply (UPS). Also, their use is being extended to transportation and large industry applications that require high power/energy density, such as for electric vehicles and power quality systems of smart grids. In power generation using intermittent power sources such as solar and wind, a supercapacitor is configured in the energy storage system together with a battery to compensate for the relatively slow charging/discharging time of the battery, to contribute to extending the lifecycle of the battery, and to improve the system power quality. This article provides a concise overview of the principles, mechanisms, and classification of energy storage of supercapacitors in accordance with the electrode materials. Also, it provides a review of the status of recent research and patent, product, and market trends in supercapacitor technology. There are many challenges to be solved to meet industrial demands such as for high voltage module technologies, high efficiency charging, safety, performance improvement, and competitive prices.

Cross-Calibration of GOCI-II in Near-Infrared Band with GOCI (GOCI를 이용한 GOCI-II 근적외 밴드 교차보정)

  • Eunkyung Lee;Sujung Bae;Jae-Hyun Ahn;Kyeong-Sang Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_2
    • /
    • pp.1553-1563
    • /
    • 2023
  • The Geostationary Ocean Color Imager-II (GOCI-II) is a satellite designed for ocean color observation, covering the Northeast Asian region and the entire disk of the Earth. It commenced operations in 2020, succeeding its predecessor, GOCI, which had been active for the previous decade. In this study, we aimed to enhance the atmospheric correction algorithm, a critical step in producing satellite-based ocean color data, by performing cross-calibration on the GOCI-II near-infrared (NIR) band using the GOCI NIR band. To achieve this, we conducted a cross-calibration study on the top-of-atmosphere (TOA) radiance of the NIR band and derived a vicarious calibration gain for two NIR bands (745 and 865 nm). As a result of applying this gain, the offset of two sensors decreased and the ratio approached 1. It shows that consistency of two sensors was improved. Also, the Rayleigh-corrected reflectance at 745 nm and 865 nm increased by 5.62% and 9.52%, respectively. This alteration had implications for the ratio of Rayleigh-corrected reflectance at these wavelengths, potentially impacting the atmospheric correction results across all spectral bands, particularly during the aerosol reflectance correction process within the atmospheric correction algorithm. Due to the limited overlapping operational period of GOCI and GOCI-II satellites, we only used data from March 2021. Nevertheless, we anticipate further enhancements through ongoing cross-calibration research with other satellites in the future. Additionally, it is essential to apply the vicarious calibration gain derived for the NIR band in this study to perform vicarious calibration for the visible channels and assess its impact on the accuracy of the ocean color products.

Optimization Process Models of Gas Combined Cycle CHP Using Renewable Energy Hybrid System in Industrial Complex (산업단지 내 CHP Hybrid System 최적화 모델에 관한 연구)

  • Oh, Kwang Min;Kim, Lae Hyun
    • Journal of Energy Engineering
    • /
    • v.28 no.3
    • /
    • pp.65-79
    • /
    • 2019
  • The study attempted to estimate the optimal facility capacity by combining renewable energy sources that can be connected with gas CHP in industrial complexes. In particular, we reviewed industrial complexes subject to energy use plan from 2013 to 2016. Although the regional designation was excluded, Sejong industrial complex, which has a fuel usage of 38 thousand TOE annually and a high heat density of $92.6Gcal/km^2{\cdot}h$, was selected for research. And we analyzed the optimal operation model of CHP Hybrid System linking fuel cell and photovoltaic power generation using HOMER Pro, a renewable energy hybrid system economic analysis program. In addition, in order to improve the reliability of the research by analyzing not only the heat demand but also the heat demand patterns for the dominant sectors in the thermal energy, the main supply energy source of CHP, the economic benefits were added to compare the relative benefits. As a result, the total indirect heat demand of Sejong industrial complex under construction was 378,282 Gcal per year, of which paper industry accounted for 77.7%, which is 293,754 Gcal per year. For the entire industrial complex indirect heat demand, a single CHP has an optimal capacity of 30,000 kW. In this case, CHP shares 275,707 Gcal and 72.8% of heat production, while peak load boiler PLB shares 103,240 Gcal and 27.2%. In the CHP, fuel cell, and photovoltaic combinations, the optimum capacity is 30,000 kW, 5,000 kW, and 1,980 kW, respectively. At this time, CHP shared 275,940 Gcal, 72.8%, fuel cell 12,390 Gcal, 3.3%, and PLB 90,620 Gcal, 23.9%. The CHP capacity was not reduced because an uneconomical alternative was found that required excessive operation of the PLB for insufficient heat production resulting from the CHP capacity reduction. On the other hand, in terms of indirect heat demand for the paper industry, which is the dominant industry, the optimal capacity of CHP, fuel cell, and photovoltaic combination is 25,000 kW, 5,000 kW, and 2,000 kW. The heat production was analyzed to be CHP 225,053 Gcal, 76.5%, fuel cell 11,215 Gcal, 3.8%, PLB 58,012 Gcal, 19.7%. However, the economic analysis results of the current electricity market and gas market confirm that the return on investment is impossible. However, we confirmed that the CHP Hybrid System, which combines CHP, fuel cell, and solar power, can improve management conditions of about KRW 9.3 billion annually for a single CHP system.

A Study on the Habitat Environment Survey and Conservation of Rhododendron micranthum in National Baekdudaegan Arboretum (국립백두대간수목원 꼬리진달래 자생지 환경특성 및 보전방안)

  • Chung, Bo-Kwang;Gang, Sin-Gu;Bae, Jun-Gyu;Kim, Jae-Hyeon;Lee, Juyoung;Chang, Jeong-Won;Lee, Sang-Hyun;Lee, Yeong-Su;An, Min-Woo;Kim, Gi-Song
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.19 no.6
    • /
    • pp.87-100
    • /
    • 2016
  • This research was performed for the purpose of providing useful and base data and preservation strategy of growth characteristics of Rhododendron micranthum. From the result of research, wild growth area of Rhododendron micranthum was discovered near steep forest road on 695~901m in altitude above sea level of Baekdu-daegan National Arboretum. Vegetation colony structure of Site I was resulted in Pinus densiflora(tree stratum M.I.P.=45.3%) is dominants, Betula schmidtii(arborescent M.I.P.=9.8%) is second dominant, and Site III resulted in Pinus densiflora(tree stratum M.I.P.=30.5%) is dominants, Betula schmidtii(arborescent M.I.P.=10.3%) is second dominant. Site II resulted in Betula schmidtii(arborescent M.I.P.=30.4%) is dominants and Pinus densiflora tree(tree stratum M.I.P.=8.3%) is second dominants. For herbs, it was researched that the rate of one year herb of chrysanthemum family(10), rice family(3), sedge(2) was higher than near forest area. Among Species diversity index, that of Shannon was in range of 0.7348~1.1090. After comparing this with similar area, this value was relatively low. Dominance analysis result was analyzed that various groups are evenly distributed. Monthly highest average temperature is $23.9^{\circ}$ in Site A and Site B, and monthly lowest average temperature is $-4.5^{\circ}C$ in Site I and $-4.7^{\circ}C$ in Site II. Monthly maximum average humidity is 85.6% in Site I and 83.2% in Site II. Monthly minimum average humidity is 60.9% in Site I and 60.8% in Site II and it showed that these 2 area are located far away but have similar temperature and humidity characteristic and climate environment is similar. It was analyzed that humidity is high with the result of annual average humidity is over 60%. In growth characteristic, it showed that doubt damage of Stephanitis pyrioides, exposure of roots, peeled bark was discovered and supplement on this is urgent.

Comparison of Ocean Optical Properties Between the Micronesia and the Korean Peninsula (남태평양 마이크로네시아와 한반도 주변 해역의 해수 광학특성 비교)

  • Moon, Jeong-Eon;Choi, Jong-Kuk
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.1125-1133
    • /
    • 2021
  • This study attempted to understand seawater characteristics like chlorophyll concentration (CHL), total suspended matter concentration (TSM), absorption characteristics, and remote sensing reflectance around Weno Island, Micronesia, located in the South Pacific Ocean near the equator. 50 in-situ measurement from May to June 2013 were analyzed and compared with data from around Korean peninsula. CHL around Weno Island was 0.11-0.49 mg/m3 (average 0.26 mg/m3), and TSM was 0.03-0.31 g/m3, (average 0.16 g/m3), showing typical clear water characteristics. Absorption coefficient of total suspended matters at 443 nm showed over 0.5 times less than that from East Sea and the slope of absorption coefficient spectrum of dissolved organic matter showed much larger than that of Korean peninsula, indicating the concentration of organic matter is very low and dissolved organic matter of marine origin is considered to be the main component in the study area. As a result of comparing the remote sensing reflectance spectrum with that of coastal waters around the Korean peninsula, coastal waters around Weno Island showed typical CASE-1 water properties. It was possible to understand the marine optical characteristics of coral reef habitats in tropical waters, and it can be used to develop seawater algorithms specialized in the study area.

Depth-dependent Variations in Elemental and Mineral Distribution in the Deep Oceanic Floor Sediments (WP21GPC04) near the Mariana Trench in the Western Pacific Ocean (마리아나 해구에 인접한 서태평양 심해평원의 정점 WP21GPC04에서 수집된 해양 퇴적물의 깊이에 따른 원소 및 광물 분포 변화)

  • Junte Heo;Seohee Yun;Jonguk Kim;Young Tak Ko;Yongjae Lee
    • Economic and Environmental Geology
    • /
    • v.56 no.5
    • /
    • pp.581-588
    • /
    • 2023
  • This study reports depth-dependent elemental distribution and mineral abundance of the oceanic sediment sample (WP21GPC04) near the Mariana Trench collected during the WP21 expedition in 2021. The elemental distribution determined by μ-XRF shows no significant differences with varying depth, with an average SiO2 53.91 wt%, FeO 4.48 wt%, Al2O3 16.56 wt%, MgO 2.56 wt%, CaO 4.79 wt%, Na2O 3.52 wt%, K2O 5.48 wt%, similar to the average chemical composition of global subducting sediments (GLOSS). The mineral abundances analyzed using synchrotron XRD, however, vary with depth. While quartz, mica, and plagioclase were identified at all depths, chlorite was found at shallow depths, and zeolite group minerals, phillipsite and heulandite, showed a gradual change in phase fraction with depth. This suggests a change in sedimentation and alteration environments in the region, or the potential for coexistence emerges due to similar sediment stability. Overall, this study will provide a basis for the future investigations on the evolution of sedimentary environment near the Mariana Trench in the western Pacific Ocean and the phase distribution and the behavior of subducting oceanic sediments, which will affect the lithological and geochemical characteristics of the Mariana susduction system.

A Moral Education Development of Security Martial Arts (경호무도 수련의 도덕교육 발전방안)

  • Oh, Se-Kwang;Park, Jun-Seok
    • Korean Security Journal
    • /
    • no.23
    • /
    • pp.65-86
    • /
    • 2010
  • The conclusion for this paper is as following as to plan for advancing security. First, Depending on situation, security martial arts technique is necessary in security work, but the case that the client need to be covered by security guards to avoid the danger often happens. If there is no self-sacrifice and loyalty to the clients, the meaningful security work is not completed in this situation. Therefore, the basic views on education of security leaders need to be defensive than aggressive, and be spirit-equipped than technical feature. Second, more time has to be taken training mentality along with focusing on technical education of security martial arts. To escape from danger spreaded around, security guards must be strong mentally and physically, then they are able to finish the situation. If someone is chosen as a security guard, one's physical strength is already approved. This means that the rest part for the perfect accomplishment is strict discipline on mental one's mind, and basically physical training has to be continued. In conclusion, The elements that the instructor has to acquire are not only extensive theoretical knowledge of the security martial arts and real experiences through techniques but also personality cultivation which maximize the morality training. Accordingly, this could bring the client personally change in perception of the security guard, furthermore greatly expand the academic and professional security work of security department.

  • PDF

Design Study for Power Integrity in Mobile Devices (모바일 기기의 전원 무결성을 위한 설계 연구)

  • Sa, Gi-Dong;Lim, Yeong-Seog
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.5
    • /
    • pp.927-934
    • /
    • 2019
  • Recently, mobile devices have evolved into small computers with various functions according to user requirements. Careful attention must be paid to the design of the power supply network for the stable operation of the application processor (AP), the wireless communication modem, the high performance camera, and the various interfaces of the mobile device to implement various functions of the mobile device. In this paper, we analyzed and verified the method of optimizing the design parameters such as the position, capacity, and number of decoupling capacitors to meet the target impedance required by the driver IC chip to ensure the stability of the power supply network of mobile devices that should be designed as wiring type due to mounting density limitation. The proposed wired power supply network design method can be applied to various applications including high-speed signal transmission line in addition to mobile applications.