• Title/Summary/Keyword: 한계 자율 주행

Search Result 80, Processing Time 0.018 seconds

Design and Implementation of Vehicle Control Network Using WiFi Network System (WiFi 네트워크 시스템을 활용한 차량 관제용 네트워크의 설계 및 구현)

  • Yu, Hwan-Shin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.632-637
    • /
    • 2019
  • Recent researches on autonomous driving of vehicles are becoming very active, and it is a trend to assist safe driving and improve driver's convenience. Autonomous vehicles are required to combine artificial intelligence, image recognition capability, and Internet communication between objects. Because mobile telecommunication networks have limitations in their processing, they can be easily implemented and scale using an easily expandable Wi-Fi network. We propose a wireless design method to construct such a vehicle control network. We propose the arrangement of AP and the software configuration method to minimize loss of data transmission / reception of mobile terminal. Through the design of the proposed network system, the communication performance of the moving vehicle can be dramatically increased. We also verify the packet structure of GPS, video, voice, and data communication that can be used for the vehicle through experiments on the movement of various terminal devices. This wireless design technology can be extended to various general purpose wireless networks such as 2.4GHz, 5GHz and 10GHz Wi-Fi. It is also possible to link wireless intelligent road network with autonomous driving.

Classification of 3D Road Objects Using Machine Learning (머신러닝을 이용한 3차원 도로객체의 분류)

  • Hong, Song Pyo;Kim, Eui Myoung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.6
    • /
    • pp.535-544
    • /
    • 2018
  • Autonomous driving can be limited by only using sensors if the sensor is blocked by sudden changes in surrounding environments or large features such as heavy vehicles. In order to overcome the limitations, the precise road-map has been used additionally. This study was conducted to segment and classify road objects using 3D point cloud data acquired by terrestrial mobile mapping system provided by National Geographic Information Institute. For this study, the original 3D point cloud data were pre-processed and a filtering technique was selected to separate the ground and non-ground points. In addition, the road objects corresponding to the lanes, the street lights, the safety fences were initially segmented, and then the objects were classified using the support vector machine which is a kind of machine learning. For the training data for supervised classification, only the geometric elements and the height information using the eigenvalues extracted from the road objects were used. The overall accuracy of the classification results was 87% and the kappa coefficient was 0.795. It is expected that classification accuracy will be increased if various classification items are added not only geometric elements for classifying road objects in the future.

Interactive ADAS development and verification framework based on 3D car simulator (3D 자동차 시뮬레이터 기반 상호작용형 ADAS 개발 및 검증 프레임워크)

  • Cho, Deun-Sol;Jung, Sei-Youl;Kim, Hyeong-Su;Lee, Seung-gi;Kim, Won-Tae
    • Journal of IKEEE
    • /
    • v.22 no.4
    • /
    • pp.970-977
    • /
    • 2018
  • The autonomous vehicle is based on an advanced driver assistance system (ADAS) consisting of a sensor that collects information about the surrounding environment and a control module that determines the measured data. As interest in autonomous navigation technology grows recently, an easy development framework for ADAS beginners and learners is needed. However, existing development and verification methods are based on high performance vehicle simulator, which has drawbacks such as complexity of verification method and high cost. Also, most of the schemes do not provide the sensing data required by the ADAS directly from the simulator, which limits verification reliability. In this paper, we present an interactive ADAS development and verification framework using a 3D vehicle simulator that overcomes the problems of existing methods. ADAS with image recognition based artificial intelligence was implemented as a virtual sensor in a 3D car simulator, and autonomous driving verification was performed in real scenarios.

Estimation of City Bus Delay Element using Levenberg-Marquardt (Levenberg-Marquardt알고리즘을 이용한 시내버스 지연요소 추정)

  • Lee, Jin-Woo;Lee, Hyun-Mi;Lee, Hyeon-Soo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.3
    • /
    • pp.493-498
    • /
    • 2017
  • Recently, traffic data is analyzed for efficiency of bus operation, D2D(: Door to Door) service, and self-driving of public transportation. However, various studies have been carried out to predict the delay time of public transportation, especially buses, but the research to date has been insufficient due to limitations of simple analysis and data acquisition. In this study, delay time estimation is performed by collecting and processing data such as day of the week, weather, and time of day based on bus operation information. The proposed method in this paper can be applied to autonomous public transport and public traffic control system by improving the accuracy by adding variables in the future.

A Study of Tram-Pedestrian Collision Prediction Method Using YOLOv5 and Motion Vector (YOLOv5와 모션벡터를 활용한 트램-보행자 충돌 예측 방법 연구)

  • Kim, Young-Min;An, Hyeon-Uk;Jeon, Hee-gyun;Kim, Jin-Pyeong;Jang, Gyu-Jin;Hwang, Hyeon-Chyeol
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.12
    • /
    • pp.561-568
    • /
    • 2021
  • In recent years, autonomous driving technologies have become a high-value-added technology that attracts attention in the fields of science and industry. For smooth Self-driving, it is necessary to accurately detect an object and estimate its movement speed in real time. CNN-based deep learning algorithms and conventional dense optical flows have a large consumption time, making it difficult to detect objects and estimate its movement speed in real time. In this paper, using a single camera image, fast object detection was performed using the YOLOv5 algorithm, a deep learning algorithm, and fast estimation of the speed of the object was performed by using a local dense optical flow modified from the existing dense optical flow based on the detected object. Based on this algorithm, we present a system that can predict the collision time and probability, and through this system, we intend to contribute to prevent tram accidents.

Analysis of Automotive HMI Characteristics through On-road Driving Research (실차 주행 연구를 통한 차량별 HMI 특성 분석)

  • Oh, Kwangmyung
    • Journal of the HCI Society of Korea
    • /
    • v.14 no.2
    • /
    • pp.49-60
    • /
    • 2019
  • With the appearance of self-driving cars and electric cars, the automobile industry is rapidly changing. In the midst of these changes, HMI studies are becoming more important as to how the driver obtains safety and convenience with controlling the vehicle. This study sought to understand how automobile manufacturers understand the driving situation, and how they define and limit driver interaction. For this, prior studies about HMI were reviewed and 15 participants performed an on-road study to drive vehicles from five manufacturers with using their interfaces. The results of the study confirmed that buttons and switches that are easily controlled by the user while driving were different from manufacturer to manufacturer. And there are some buttons that are more intensively controlled and others that are difficult to control while driving. It was able to derive 'selection and concentration' from Audi's vehicle, 'optimization of the driving ' from BMW's, 'simple and minimize' from Benz's vehicle, 'remove the manual distraction' from the vehicle of Lexus, and 'visual stability' from KIA's vehicle as the distinctive keywords for the HMI. This shows that each manufacturer has a different definition and interpretation of the driver's driving control area. This study has a distinct value in that it has identified the characteristics of vehicle-specific HMI in actual driving conditions, which is not apparent in appearance. It is expected that this research approach can be useful to see differences in interaction through actual driving despite changes in driving environment such as vehicle platooning and self-driving technology.

Multiple Objects Detection using Super-Resolution Method with Two Discriminators (두 개의 구분자 기반의 초해상화 기법을 이용한 다중객체 검출 방법)

  • Kim, Jin-Seo;Jung, Young-Min;Hwang, Seong-Bin;Kwon, Oh-Seol
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.11a
    • /
    • pp.82-84
    • /
    • 2022
  • 최근 자율주행에서 안전한 주행을 위해 영상 기반 다중객체 검출 기술이 활발히 연구되고 있다. 이때, 저해상도 영상은 객체 검출 단계에서 정확도가 떨어지는 한계가 있다. 본 논문에서는 이러한 문제점을 해결하기 위해 초해상화와 객체 검출을 위한 방법을 함께 사용하는 기법을 제안한다. 더 나아가 초해상화 단계에서 하나의 구분자만 사용하는 기존의 방법과 다르게 이미지 생성 과정 중간에서 추가의 구분자를 사용하여 총 두 개의 구분자를 사용하여 성능을 향상하고자 하였다. 본 논문은 한국 고속도로 교통 데이터를 사용하여 실험하였으며, 그 결과 제안된 방법의 성능이 mAP@0.5 및 F1 점수 측면에서 기존 방법보다 우수하다는 것을 확인하였다.

  • PDF

Development of LiDAR-Based MRM Algorithm for LKS System (LKS 시스템을 위한 라이다 기반 MRM 알고리즘 개발)

  • Son, Weon Il;Oh, Tae Young;Park, Kihong
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.1
    • /
    • pp.174-192
    • /
    • 2021
  • The LIDAR sensor, which provides higher cognitive performance than cameras and radar, is difficult to apply to ADAS or autonomous driving because of its high price. On the other hand, as the price is decreasing rapidly, expectations are rising to improve existing autonomous driving functions by taking advantage of the LIDAR sensor. In level 3 autonomous vehicles, when a dangerous situation in the cognitive module occurs due to a sensor defect or sensor limit, the driver must take control of the vehicle for manual driving. If the driver does not respond to the request, the system must automatically kick in and implement a minimum risk maneuver to maintain the risk within a tolerable level. In this study, based on this background, a LIDAR-based LKS MRM algorithm was developed for the case when the normal operation of LKS was not possible due to troubles in the cognitive system. From point cloud data collected by LIDAR, the algorithm generates the trajectory of the vehicle in front through object clustering and converts it to the target waypoints of its own. Hence, if the camera-based LKS is not operating normally, LIDAR-based path tracking control is performed as MRM. The HAZOP method was used to identify the risk sources in the LKS cognitive systems. B, and based on this, test scenarios were derived and used in the validation process by simulation. The simulation results indicated that the LIDAR-based LKS MRM algorithm of this study prevents lane departure in dangerous situations caused by various problems or difficulties in the LKS cognitive systems and could prevent possible traffic accidents.

Line Segments Matching Framework for Image Based Real-Time Vehicle Localization (이미지 기반 실시간 차량 측위를 위한 선분 매칭 프레임워크)

  • Choi, Kanghyeok
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.2
    • /
    • pp.132-151
    • /
    • 2022
  • Vehicle localization is one of the core technologies for autonomous driving. Image-based localization provides location information efficiently, and various related studies have been conducted. However, the image-based localization methods using feature points or lane information has a limitation that positioning accuracy may be greatly affected by road and driving environments. In this study, we propose a line segment matching framework for accurate vehicle localization. The proposed framework consists of four steps: line segment extraction, merging, overlap area detection, and MSLD-based segment matching. The proposed framework stably performed line segment matching at a sufficient level for vehicle positioning regardless of vehicle speed, driving method, and surrounding environment.

Dynamically Acquired Point Cloud Compression Method based on Video based Point Cloud Compression (V - PCC 기반 동적 획득 포인트 클라우드 압축 방안)

  • Kim, Junsik;Im, Jiheon;Kim, Kyuheon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2019.06a
    • /
    • pp.185-188
    • /
    • 2019
  • 3D 영상 데이터 중 하나인, 포인트 클라우드는 3 차원 데이터를 정밀하게 획득 할 수 있다는 장점으로 인해 군사, 교육, 의료, 건축 등의 다양한 분야에서 사용되고 있다. 특히, 자율 주행 분야에서 사용되는 동적 획득 포인트 클라우드는 광범위한 영역을 표현하므로 방대한 양의 데이터를 갖고 있어, 효율적인 압축이 필수적이다. 비디오 코덱을 활용하여 3 차원 데이터 압축을 진행하는 V - PCC 의 경우, 신뢰성과 범용성이 높다는 장점이 있으나, 2D 비디오 영상을 활용하기 때문에 대용량 및 광범위한 데이터의 압축이 불가능하다는 한계를 지니고 있다. 따라서, 본 논문에서는 V- PCC 의 한계를 극복하고, 광범위한 영역의 정보를 표현하는 동적 획득 포인트를 압축하기 위해 포인트 클라우드를 분할 및 양자화하는 방안을 제시하였다.

  • PDF