Journal of the Korea Academia-Industrial cooperation Society
/
v.20
no.3
/
pp.632-637
/
2019
Recent researches on autonomous driving of vehicles are becoming very active, and it is a trend to assist safe driving and improve driver's convenience. Autonomous vehicles are required to combine artificial intelligence, image recognition capability, and Internet communication between objects. Because mobile telecommunication networks have limitations in their processing, they can be easily implemented and scale using an easily expandable Wi-Fi network. We propose a wireless design method to construct such a vehicle control network. We propose the arrangement of AP and the software configuration method to minimize loss of data transmission / reception of mobile terminal. Through the design of the proposed network system, the communication performance of the moving vehicle can be dramatically increased. We also verify the packet structure of GPS, video, voice, and data communication that can be used for the vehicle through experiments on the movement of various terminal devices. This wireless design technology can be extended to various general purpose wireless networks such as 2.4GHz, 5GHz and 10GHz Wi-Fi. It is also possible to link wireless intelligent road network with autonomous driving.
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.36
no.6
/
pp.535-544
/
2018
Autonomous driving can be limited by only using sensors if the sensor is blocked by sudden changes in surrounding environments or large features such as heavy vehicles. In order to overcome the limitations, the precise road-map has been used additionally. This study was conducted to segment and classify road objects using 3D point cloud data acquired by terrestrial mobile mapping system provided by National Geographic Information Institute. For this study, the original 3D point cloud data were pre-processed and a filtering technique was selected to separate the ground and non-ground points. In addition, the road objects corresponding to the lanes, the street lights, the safety fences were initially segmented, and then the objects were classified using the support vector machine which is a kind of machine learning. For the training data for supervised classification, only the geometric elements and the height information using the eigenvalues extracted from the road objects were used. The overall accuracy of the classification results was 87% and the kappa coefficient was 0.795. It is expected that classification accuracy will be increased if various classification items are added not only geometric elements for classifying road objects in the future.
The autonomous vehicle is based on an advanced driver assistance system (ADAS) consisting of a sensor that collects information about the surrounding environment and a control module that determines the measured data. As interest in autonomous navigation technology grows recently, an easy development framework for ADAS beginners and learners is needed. However, existing development and verification methods are based on high performance vehicle simulator, which has drawbacks such as complexity of verification method and high cost. Also, most of the schemes do not provide the sensing data required by the ADAS directly from the simulator, which limits verification reliability. In this paper, we present an interactive ADAS development and verification framework using a 3D vehicle simulator that overcomes the problems of existing methods. ADAS with image recognition based artificial intelligence was implemented as a virtual sensor in a 3D car simulator, and autonomous driving verification was performed in real scenarios.
The Journal of the Korea institute of electronic communication sciences
/
v.12
no.3
/
pp.493-498
/
2017
Recently, traffic data is analyzed for efficiency of bus operation, D2D(: Door to Door) service, and self-driving of public transportation. However, various studies have been carried out to predict the delay time of public transportation, especially buses, but the research to date has been insufficient due to limitations of simple analysis and data acquisition. In this study, delay time estimation is performed by collecting and processing data such as day of the week, weather, and time of day based on bus operation information. The proposed method in this paper can be applied to autonomous public transport and public traffic control system by improving the accuracy by adding variables in the future.
Kim, Young-Min;An, Hyeon-Uk;Jeon, Hee-gyun;Kim, Jin-Pyeong;Jang, Gyu-Jin;Hwang, Hyeon-Chyeol
KIPS Transactions on Software and Data Engineering
/
v.10
no.12
/
pp.561-568
/
2021
In recent years, autonomous driving technologies have become a high-value-added technology that attracts attention in the fields of science and industry. For smooth Self-driving, it is necessary to accurately detect an object and estimate its movement speed in real time. CNN-based deep learning algorithms and conventional dense optical flows have a large consumption time, making it difficult to detect objects and estimate its movement speed in real time. In this paper, using a single camera image, fast object detection was performed using the YOLOv5 algorithm, a deep learning algorithm, and fast estimation of the speed of the object was performed by using a local dense optical flow modified from the existing dense optical flow based on the detected object. Based on this algorithm, we present a system that can predict the collision time and probability, and through this system, we intend to contribute to prevent tram accidents.
With the appearance of self-driving cars and electric cars, the automobile industry is rapidly changing. In the midst of these changes, HMI studies are becoming more important as to how the driver obtains safety and convenience with controlling the vehicle. This study sought to understand how automobile manufacturers understand the driving situation, and how they define and limit driver interaction. For this, prior studies about HMI were reviewed and 15 participants performed an on-road study to drive vehicles from five manufacturers with using their interfaces. The results of the study confirmed that buttons and switches that are easily controlled by the user while driving were different from manufacturer to manufacturer. And there are some buttons that are more intensively controlled and others that are difficult to control while driving. It was able to derive 'selection and concentration' from Audi's vehicle, 'optimization of the driving ' from BMW's, 'simple and minimize' from Benz's vehicle, 'remove the manual distraction' from the vehicle of Lexus, and 'visual stability' from KIA's vehicle as the distinctive keywords for the HMI. This shows that each manufacturer has a different definition and interpretation of the driver's driving control area. This study has a distinct value in that it has identified the characteristics of vehicle-specific HMI in actual driving conditions, which is not apparent in appearance. It is expected that this research approach can be useful to see differences in interaction through actual driving despite changes in driving environment such as vehicle platooning and self-driving technology.
Kim, Jin-Seo;Jung, Young-Min;Hwang, Seong-Bin;Kwon, Oh-Seol
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2022.11a
/
pp.82-84
/
2022
최근 자율주행에서 안전한 주행을 위해 영상 기반 다중객체 검출 기술이 활발히 연구되고 있다. 이때, 저해상도 영상은 객체 검출 단계에서 정확도가 떨어지는 한계가 있다. 본 논문에서는 이러한 문제점을 해결하기 위해 초해상화와 객체 검출을 위한 방법을 함께 사용하는 기법을 제안한다. 더 나아가 초해상화 단계에서 하나의 구분자만 사용하는 기존의 방법과 다르게 이미지 생성 과정 중간에서 추가의 구분자를 사용하여 총 두 개의 구분자를 사용하여 성능을 향상하고자 하였다. 본 논문은 한국 고속도로 교통 데이터를 사용하여 실험하였으며, 그 결과 제안된 방법의 성능이 mAP@0.5 및 F1 점수 측면에서 기존 방법보다 우수하다는 것을 확인하였다.
The Journal of The Korea Institute of Intelligent Transport Systems
/
v.20
no.1
/
pp.174-192
/
2021
The LIDAR sensor, which provides higher cognitive performance than cameras and radar, is difficult to apply to ADAS or autonomous driving because of its high price. On the other hand, as the price is decreasing rapidly, expectations are rising to improve existing autonomous driving functions by taking advantage of the LIDAR sensor. In level 3 autonomous vehicles, when a dangerous situation in the cognitive module occurs due to a sensor defect or sensor limit, the driver must take control of the vehicle for manual driving. If the driver does not respond to the request, the system must automatically kick in and implement a minimum risk maneuver to maintain the risk within a tolerable level. In this study, based on this background, a LIDAR-based LKS MRM algorithm was developed for the case when the normal operation of LKS was not possible due to troubles in the cognitive system. From point cloud data collected by LIDAR, the algorithm generates the trajectory of the vehicle in front through object clustering and converts it to the target waypoints of its own. Hence, if the camera-based LKS is not operating normally, LIDAR-based path tracking control is performed as MRM. The HAZOP method was used to identify the risk sources in the LKS cognitive systems. B, and based on this, test scenarios were derived and used in the validation process by simulation. The simulation results indicated that the LIDAR-based LKS MRM algorithm of this study prevents lane departure in dangerous situations caused by various problems or difficulties in the LKS cognitive systems and could prevent possible traffic accidents.
The Journal of The Korea Institute of Intelligent Transport Systems
/
v.21
no.2
/
pp.132-151
/
2022
Vehicle localization is one of the core technologies for autonomous driving. Image-based localization provides location information efficiently, and various related studies have been conducted. However, the image-based localization methods using feature points or lane information has a limitation that positioning accuracy may be greatly affected by road and driving environments. In this study, we propose a line segment matching framework for accurate vehicle localization. The proposed framework consists of four steps: line segment extraction, merging, overlap area detection, and MSLD-based segment matching. The proposed framework stably performed line segment matching at a sufficient level for vehicle positioning regardless of vehicle speed, driving method, and surrounding environment.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2019.06a
/
pp.185-188
/
2019
3D 영상 데이터 중 하나인, 포인트 클라우드는 3 차원 데이터를 정밀하게 획득 할 수 있다는 장점으로 인해 군사, 교육, 의료, 건축 등의 다양한 분야에서 사용되고 있다. 특히, 자율 주행 분야에서 사용되는 동적 획득 포인트 클라우드는 광범위한 영역을 표현하므로 방대한 양의 데이터를 갖고 있어, 효율적인 압축이 필수적이다. 비디오 코덱을 활용하여 3 차원 데이터 압축을 진행하는 V - PCC 의 경우, 신뢰성과 범용성이 높다는 장점이 있으나, 2D 비디오 영상을 활용하기 때문에 대용량 및 광범위한 데이터의 압축이 불가능하다는 한계를 지니고 있다. 따라서, 본 논문에서는 V- PCC 의 한계를 극복하고, 광범위한 영역의 정보를 표현하는 동적 획득 포인트를 압축하기 위해 포인트 클라우드를 분할 및 양자화하는 방안을 제시하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.