• 제목/요약/키워드: 한계입력

검색결과 628건 처리시간 0.022초

MLOps를 위한 효율적인 AI 모델 드리프트 탐지방안 연구 (A Study on Efficient AI Model Drift Detection Methods for MLOps)

  • 이예은;이태진
    • 인터넷정보학회논문지
    • /
    • 제24권5호
    • /
    • pp.17-27
    • /
    • 2023
  • 오늘날 AI(Artificial Intelligence) 기술이 발전하면서 실용성이 증가함에 따라 실생활 속 다양한 응용 분야에서 널리 활용되고 있다. 이때 AI Model은 기본적으로 학습 데이터의 다양한 통계적 속성을 기반으로 학습된 후 시스템에 배포되지만, 급변하는 데이터의 상황 속 예상치 못한 데이터의 변화는 모델의 성능저하를 유발한다. 특히 보안 분야에서 끊임없이 생성되는 새로운 공격과 알려지지 않은 공격에 대응하기 위해서는 배포된 모델의 Drift Signal을 찾는 것이 중요해짐에 따라 모델 전체의 Lifecycle 관리 필요성이 점차 대두되고 있다. 일반적으로 모델의 정확도 및 오류율(Loss)의 성능변화를 통해 탐지할 수 있지만, 모델 예측 결과에 대한 실제 라벨이 필요한 점에서 사용 환경의 제약이 존재하며, 실제 드리프트가 발생한 지점의 탐지가 불확실한 단점이 있다. 그 이유는 모델의 오류율의 경우 다양한 외부 환경적 요인, 모델의 선택과 그에 따른 파라미터 설정, 그리고 새로운 입력데이터에 따라 크게 영향을 받기에 해당 값만을 기반으로 데이터의 실질적인 드리프트 발생 시점을 정밀하게 판단하는 것은 한계가 존재하게 된다. 따라서 본 논문에서는 XAI(eXplainable Artificial Intelligence) 기반 Anomaly 분석기법을 통해 실질적인 드리프트가 발생한 시점을 탐지하는 방안을 제안한다. DGA(Domain Generation Algorithm)를 탐지하는 분류모델을 대상으로 시험한 결과, 배포된 이후 데이터의 SHAP(Shapley Additive exPlanations) Value를 통해 Anomaly score를 추출하였고, 그 결과 효율적인 드리프트 시점탐지가 가능함을 확인하였다.

욕구-현실 충돌 상황에서의 주체성의 역할 (The Role of Relational Agency in a Need-reality Colliding Situation)

  • 김세헌;허태균
    • 한국심리학회지 : 문화 및 사회문제
    • /
    • 제29권4호
    • /
    • pp.617-636
    • /
    • 2023
  • 본 연구는 한국인이 보이는 욕구-현실 충돌에서 나타나는 극복 노력 현상(불굴의 의지)을 한국인의 문화적 특성으로 설명하고자 하였다. 구체적으로 자신의 욕구와 현실 간의 충돌이 발생한 상황에서 개인의 주체성 정도에 따라 그 상황을 대하는 행동 양식이 달라지는지를 살펴보았다. 이를 위해 총 217명의 참여자가 온라인 실험에 참여하였고, 최종적으로 156명의 데이터가 분석되었다. 참여자는 주체성 척도에 응답한 뒤, 상충적 요소가 존재하는 의사결정 시나리오에 노출되었다. 시나리오는 집 구매와 결혼식장 계약 시나리오였고, 각 시나리오에서는 중요하게 여겨지는 두 개의 가치가 시장에서 서로 상충되도록 설정되었다. 참여자는 해당 시나리오를 읽고 각 가치에 대해 스스로가 원하는 수준을 입력하였다. 그 뒤, 시나리오 속 대리인이 참여자가 원하는 수준의 후보지를 찾지 못한 상황을 접하게 된다. 이후, 참여자는 스스로 자신이 직접 나서 추가적인 노력을 할 의향에 대해 응답하였다. 연구 결과, 참여자의 주체성 정도는 추가적인 노력 정도에 정적인 관계를 나타냈다. 또한 현실 한계를 초과하여 원하는 수준(기대 불일치)의 정도는 주체성을 통제한 상태에서 추가적인 노력 정도에 대해 비선형(역 U형)의 영향력을 나타냈다. 나아가 주체성과 기대 불일치 간의 상호작용효과가 유의하였다. 구체적으로 주체성이 낮은 개인은 기대 불일치 정도와 종속변인 간의 관계가 유의하지 않았으나, 주체성이 높은 개인은 기대 불일치 정도와 종속변인 간의 비선형 관계가 유의하였다. 연구 결과를 바탕으로 욕구-현실 충돌 장면에서의 한국인의 심리적 특성(주체성)의 역할과 기능에 대해 논하였다.

멀티-뷰 영상들을 활용하는 3차원 의미적 분할을 위한 효과적인 멀티-모달 특징 융합 (Effective Multi-Modal Feature Fusion for 3D Semantic Segmentation with Multi-View Images)

  • 배혜림;김인철
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제12권12호
    • /
    • pp.505-518
    • /
    • 2023
  • 3차원 포인트 클라우드 의미적 분할은 각 포인트별로 해당 포인트가 속한 물체나 영역의 분류 레이블을 예측함으로써, 포인트 클라우드를 서로 다른 물체들이나 영역들로 나누는 컴퓨터 비전 작업이다. 기존의 3차원 의미적 분할 모델들은 RGB 영상들에서 추출하는 2차원 시각적 특징과 포인트 클라우드에서 추출하는 3차원 기하학적 특징의 특성을 충분히 고려한 특징 융합을 수행하지 못한다는 한계가 있다. 따라서, 본 논문에서는 2차원-3차원 멀티-모달 특징을 이용하는 새로운 3차원 의미적 분할 모델 MMCA-Net을 제안한다. 제안 모델은 중기 융합 전략과 멀티-모달 교차 주의집중 기반의 융합 연산을 적용함으로써, 이질적인 2차원 시각적 특징과 3차원 기하학적 특징을 효과적으로 융합한다. 또한 3차원 기하학적 인코더로 PTv2를 채용함으로써, 포인트들이 비-정규적으로 분포한 입력 포인트 클라우드로부터 맥락정보가 풍부한 3차원 기하학적 특징을 추출해낸다. 본 논문에서는 제안 모델의 성능을 분석하기 위해 벤치마크 데이터 집합인 ScanNetv2을 이용한 다양한 정량 및 정성 실험들을 진행하였다. 성능 척도 mIoU 측면에서 제안 모델은 3차원 기하학적 특징만을 이용하는 PTv2 모델에 비해 9.2%의 성능 향상을, 2차원-3차원 멀티-모달 특징을 사용하는 MVPNet 모델에 비해 12.12%의 성능 향상을 보였다. 이를 통해 본 논문에서 제안한 모델의 효과와 유용성을 입증하였다.

인공신경망을 활용한 동적 물성치 산정 연구 (Neural Network-Based Prediction of Dynamic Properties)

  • 민대홍;김영석;김세원;최현준;윤형구
    • 한국지반공학회논문집
    • /
    • 제39권12호
    • /
    • pp.37-46
    • /
    • 2023
  • 동적 물성치는 지반의 상세한 거동을 예측하기 위한 필수인자이나, 샘플 채취와 추가적인 실험이 동반되는 한계가 있다. 본 연구의 목적은 정적 지반 물성치를 기반으로 동적 지반 물성치를 예측하는 것으로 인공신경망을 활용하고자 하였다. 정적 물성치는 점착력, 내부마찰각, 함수비, 비중 그리고 일축압축강도로 선정하였으며 출력 값인 동적물성치는 압축파 속도와 전단파 속도로 결정하였다. 인공신경망 적용시 결과값의 신뢰성을 높이기 위해 Levenberg-Marquardt와 Bayesian regularization 방법을 적용하였으며, 각 최적화 방법에 따른 신뢰성을 비교하였다. 인공신경망 모델의 정확도는 결정계수로 나타냈으며, train과 test 과정 모두 0.9 이상의 값을 보여 해당 연구에서 구축한 인공신경망의 신뢰성이 높은 것으로 나타났다. 또한, 구축된 인공신경망 모델의 검증을 위해 새로운 입력 데이터에 대해서도 출력값의 신뢰성을 검증하였으며, 그 결과 높은 정확도를 보였다.

수조에서 입자 매질의 평면파 반사계수 측정과 Biot 이론에 의한 예측 (Measurement of the Plane Wave Reflection Coefficient for the Saturated Granular Medium in the Water Tank and Comparison to Predictions by the Biot Theory)

  • 이근화
    • 한국음향학회지
    • /
    • 제25권5호
    • /
    • pp.246-256
    • /
    • 2006
  • 평면파 반사 계수는 수중에서의 음파에너지에 관한 해저 바닥의 모든 정보를 담고 있고 음향 해석 모델의 입력 값으로도 사용할 수 있는 음향학적 물리량이다. 본 연구에서는 실험실 수조 환경에서 입자 매질 ( 세 종류의 유리구슬, 모래 )의 평면파 반사 계수, 음속 및 감쇠계수를 측정했다. 반사 실험은 수조의 한계를 고려해 $28{\sim}53^{\circ}$의 입사각과 중심 주파수 100kHz의 협대역 신호를 이용해 수행했다. 자기 교정법 (Self-calibration method)을 이용해 측정된 자료로부터 반사 계수를 계산했고 측정된 반사 계수의 경향 및 실험의 불확실성을 서술했다. 입자 매질의 음속 및 감쇠계수는 거리 수신 신호간의 회귀분석을 통해 계산했다. Biot 이론을 이용해 측정된 음속과 감쇠계수로부터 다공율과 침투율을 추정하고 실제 지질학적 측정값과의 유사성을 확인했다. 최종적으로 추정된 다공율, 침투율을 이용해 이론적 인 반사 계수를 계산하고 반사 실험의 측정값과 비교했다. 본 실험 결과는 Biot 이론으로 일관성 있게 입자 매질의 음향학적 물성을 설명할 수 있음을 입증한다.

챗GPT를 활용한 기록관리 메타데이터 추출 사례연구 (A Case Study on Metadata Extractionfor Records Management Using ChatGPT)

  • 김민지;강성희;이해영
    • 한국기록관리학회지
    • /
    • 제24권2호
    • /
    • pp.89-112
    • /
    • 2024
  • 기록관리에서 메타데이터는 기록을 구성하는 필수 요소 중 하나로 기록물을 적절하게 관리하고 이해하도록 하는데 매우 중요한 역할을 한다. 기록관리 업무에서 메타데이터 요소들의 자동 부여가 불가능할 경우에는 기록전문가가 메타데이터 값을 직접 입력해야 한다. 이러한 업무의 불편함을 개선하기 위해 본 연구에서는 신기술인 챗GPT를 활용하여 기록관리 메타데이터 요소의 추출 방안을 제시하고자 하였다. 챗GPT 기술을 활용하기 위해 파이썬 프로그램과 랭체인 라이브러리를 이용하여 PDF 문서를 제시하고 질문을 통해 기록물의 메타데이터를 추출해보았고, 챗GPT 온라인 서비스를 통해 여러 건의 PDF 문서를 첨부하여 기록물의 메타데이터 요소를 추출해보았다. 그 결과 챗GPT-3.5 turbo를 사용한 랭체인에서는 보안상으로는 안전한 추출 방법이긴 하나 메타데이터의 정확한 요소를 얻기에는 다소 한계가 있었고, 챗GPT-4 온라인 서비스에서는 보안상 중요 문서를 첨부할 수 없지만 비교적 정확한 결과를 추출하였다. 이를 통해 기록관리에서의 메타데이터 추출을 위한 챗GPT 기술 활용의 가능성을 타진할 수 있었고, 챗GPT 관련 기술의 발달에 따라 좀 더 안전하고 정확한 결과 추출이 가능해질 것이다. 이러한 챗GPT의 장점을 활용함으로써 기록관에서 기록 및 메타데이터의 관리적 측면에서 업무의 효율성 및 생산성을 증대시키는데 도움을 줄 수 있을 것이라 기대한다.

챗지피티 4.0을 활용한 사용자 경험 계층 기반 사용자 경험 평가에 관한 기초적 연구 (A Basic Study on User Experience Evaluation Based on User Experience Hierarchy Using ChatGPT 4.0)

  • 한수민;박재완
    • 문화기술의 융합
    • /
    • 제10권2호
    • /
    • pp.493-498
    • /
    • 2024
  • 최근 생성형 인공지능 기술이 급속도로 발전함에 따라, 이를 실무에 활용하는 방법에 대한 관심이 높아지고 있다. 또한 사용자 요구에 부합하는 결과물을 생성하기 위한 프롬프트 엔지니어링의 중요성이 새롭게 조명되고 있다. 이러한 생성형 인공지능의 새로운 활용 가능성을 탐구하는 것은 중요한 가치를 지닐 수 있다. 본 연구는 대표적인 생성형 인공지능인 챗지피티 4.0을 활용하여 온라인 고객 리뷰 데이터 분석을 통한 효과적인 사용자 경험 평가 방법을 제안하는 것을 목적으로 한다. 사용자 경험 평가 방법은 사용자 경험 계층의 6단계 요소인 '기능성', '신뢰성', '사용성', '편의성', '감성', '의미성'을 기반으로 수행되었다. 본 연구를 위해 프롬프트 엔지니어링의 이해도를 높이고 사용자경험 계층의 명확한 개념을 파악하는 문헌연구를 수행하고, 이를 기반으로 프롬프트를 작성 및 수집된 온라인 고객 리뷰 데이터 분석을 통한 사용자 경험 평가 방법을 위한 실험이 수행되었다. 본 연구에서 우리는 사용자 경험 요소에 대한 정확한 정의 및 분류 과정에 대한 설명 입력 시, 챗지피티는 사용자 경험 평가에 대한 우수한 성능을 나타냈으나, 시간적 제약으로 다량의 데이터 분석에 한계를 나타냈음을 밝힌다. 우리는 사용자 경험 평가에 챗지피티 4.0을 활용하는 방법을 소개하고 제안함으로써 UX 분야의 발전에 공헌할 수 있는 것으로 기대한다.

AI를 활용한 메타데이터 추출 및 웹서비스용 메타데이터 고도화 연구 (Metadata extraction using AI and advanced metadata research for web services)

  • 박성환
    • 문화기술의 융합
    • /
    • 제10권2호
    • /
    • pp.499-503
    • /
    • 2024
  • 방송 프로그램은 자체 방송 송출 외에도 인터넷 다시 보기, OTT, IPTV 서비스 등 다양한 매체에 제공되고 있다. 이 경우 콘텐츠 특성을 잘 나타내는 검색용 키워드 제공은 필수적이다. 방송사에서는 제작 단계, 아카이브 단계 등에서 주요 키워드를 수동으로 입력하는 방법을 주로 사용한다. 이 방식은 양적으로는 핵심 메타데이터 확보에 부족하고, 내용 면에서도 타 매체 서비스에서 콘텐츠 추천과 검색에 한계를 드러낸다. 본 연구는 EBS에서 개발한 DTV 자막방송 서버를 통해 사전 아카이빙 된 폐쇄형 자막 데이터를 활용하여 다수의 메타데이터를 확보하는 방법을 구현했다. 먼저 구글의 자연어 처리 AI 기술을 적용하여 핵심 메타데이터를 자동으로 추출하였다. 다음 단계는 핵심 연구 내용으로 우선순위와 콘텐츠 특성을 반영하여 핵심 메타데이터를 찾는 방법을 제안한다. 차별화된 메타데이터 가중치를 구하는 기술로는 TF-IDF 계산법을 응용하여 중요도를 분류했다. 실험 결과 성공적인 가중치 데이터를 얻었다. 이 연구로 확보한 문자열 메타데이터는 추후 문자열 유사도 측정 연구와 결합하면 타 매체에 제공하는 콘텐츠 서비스에서 정교한 콘텐츠 추천용 메타데이터를 확보하는 기반이 된다.

고해상도 강우자료와 딥러닝 알고리즘을 활용한 수위 변동성 예측 (Utilizing deep learning algorithm and high-resolution precipitation product to predict water level variability)

  • 한희찬;강나래;윤정수;황석환
    • 한국수자원학회논문집
    • /
    • 제57권7호
    • /
    • pp.471-479
    • /
    • 2024
  • 기후변화로 인한 집중호우의 발생으로 홍수 피해가 심각해지고 있다. 하천의 수위 변동성을 예측하고 신속한 홍수 예·경보를 위해 물리적 기반의 수문 모형이 활용됐다. 최근에는 수문 데이터 간의 비선형적인 관계를 기반으로 머신러닝, 딥러닝 알고리즘을 활용한 수문 모의가 주목받고 있다. 본 연구에서는 Long Short-Term Memory (LSTM) 알고리즘을 활용하여 섬진강 수계의 하천 수위를 예측하고자 한다. 또한 Climate Prediction Center morphing method (CMORPH) 기반의 격자형 강우 자료를 알고리즘의 입력자료로 적용하여 지상 데이터의 한계를 보완하고자 한다. CMORPH 데이터와 LSTM 알고리즘을 결합한 모형의 수위 예측 결과는 평균 CC가 0.98, RMSE는 0.07 m, 그리고 NSE는 0.97로 나타났다. 향후 딥러닝과 원격자료를 활용하여 수위 예측을 수행한다면 지상 관측 데이터의 단점을 보완하고, 신뢰도 높은 예측 결과를 얻을 수 있을 것으로 기대되는 바이다.

불균형 데이터 처리를 통한 머신러닝 기반 TBM 굴진율 이상탐지 개선 (Enhancing machine learning-based anomaly detection for TBM penetration rate with imbalanced data manipulation)

  • 권기범;황병현;박현태;오주영;최항석
    • 한국터널지하공간학회 논문집
    • /
    • 제26권5호
    • /
    • pp.519-532
    • /
    • 2024
  • TBM (tunnel boring machine) 터널 프로젝트의 리스크 관리 측면에서 굴진율 예측은 중요하며, 이를 위한 머신러닝 기반 TBM 굴진율 예측 연구가 지속적으로 진행되어 왔다. 그러나, 기존 연구의 머신러닝 예측 모델은 정상 굴진율과 이상 굴진율 간의 불균형 데이터를 고려하는 데 한계가 있다. 본 연구에서는 데이터 증강 기법을 통해 불균형 데이터를 처리하여 머신러닝 기반 TBM 굴진율 이상탐지 성능을 개선하였다. 먼저, 상관관계 분석을 통해 유사 변수를 제거하여 6가지 입력특성을 선정하였다. 또한, 하위 10%와 상위 10%의 굴진율을 각각 이상 등급으로, 그 외 범위의 굴진율을 정상 등급으로 굴진율 등급을 구분하였다. 기존 학습 데이터와 SMOTE (synthetic minority oversampling technique)를 통해 증강된 학습 데이터를 각각 XGB (extreme gradient boosting)에 적용한 XGB 모델과 XGB-SMOTE 모델을 구축하였다. 굴진율 등급 예측 성능을 비교한 결과, XGB 모델은 정상 굴진율에 대한 예측 성능은 우수하나 이상 굴진율 예측 성능은 상대적으로 낮게 도출되었다. 반면, XGB-SMOTE 모델은 모든 굴진율 등급에서 일관되게 우수한 예측 성능을 보였다. 이는 SMOTE를 통한 이상 굴진율 데이터의 증강이 이상 굴진율을 유발하는 지반조건과 TBM 운영인자 간의 패턴 학습 수준을 향상시켰기 때문으로 판단된다. 결론적으로, 본 연구는 머신러닝 기반 TBM 굴진율 이상탐지 시 데이터 증강 기법을 활용한 불균형 데이터 처리가 효과적임을 보여준다.