• Title/Summary/Keyword: 한계응력 강도

Search Result 203, Processing Time 0.023 seconds

Shear Angle Variation Depending on Chip-Tool Friction in Orthogonal Cutting (二次元 切削時 칩-工具 마찰상태에 따른 剪斷角 변화)

  • 이영문;송지복
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.2
    • /
    • pp.252-261
    • /
    • 1988
  • Through the careful interpretation of the results of the cutting tests carried out in this study, it is found that under the cutting conditions when the internal shear of the chips take place the cutting can be treated essentially as a steady state problem. A new shear angle equation has been developed employing the conditions of force and moment equilibrium about the tool edge and the stress distribution model suggested by Zorev.The equation contains the chip-tool contact length C and stress distribution index n as important parameters.

熔接構造物 의 不整量 에 대하여

  • 등전양
    • Journal of Welding and Joining
    • /
    • v.1 no.1
    • /
    • pp.21-29
    • /
    • 1983
  • 용접구조물에는 필연적으로 용접에 의해서 생기는 부정량이 존재한다. 용접에 의해서 건조되는 선체구조에 있어서도 misalignment를 비롯하여 과대한 gap, 팬널(panel)의 초기변형, 용접에 의한 수축과 같은 부정량이 존재하여 선속 불록의 정도와 선체 강도에 영향을 주게 된다. 그래서 일본에서는 건조되는 동선의 품질을 고도로 유지하면서 공수를 될 수 있는 한 줄이기 위하여 이론과 실속이 뒷받침된 신속도가 높은 품질표준을 설정하는 것이 필요하다고 판단하여 1964년에 '일본동선공작법표준, japan shipbuilding quality standard(JSQS)'를 제정하였다. 그 내용에는 소재, 현도, 내용 가공부재, 조립 블록, 선형확보, 다듬질, 변형량등 주로 공정순에 따라 각각 구 분을 정한 항목마다 표준범위와 허용 한계가 표시되어 있다. 지금부터 용접에 의한 부정량의 대표예로써, 용접에 의한 변형과 잔유응력, 이음에서의 gap과 misalignment에 대하여 말하고 아울러 부정량과 JSQS와의 관계에 대해서도 간단히 말하겠다.

  • PDF

Development of a Failure Evaluation Diagram and a Database by Two Criteria Method (2기준법에 의한 파괴평가선도 및 데이터베이스 구축의 시도)

  • 이종형;심우진;황은하;강용구
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.5
    • /
    • pp.1181-1185
    • /
    • 1990
  • A failure evaluation diagram to evaluate fatigue fracture was developed. The relation between the fatigue limit and the threshold stress intensity factor for the short-cracked specimens of various materials including a piping carbon steel can be rationally predicted by the proposed method. It is shown that the coupled failure evaluation diagram for fatigue and ductile fracture is expecially useful for evaluation of the flaw tolerance as well as the margin of the safety of the pressure vessel and piping. Further, accumulation of fatigue data will be needed to construct an accurate fatigue failure evaluation diagram.

Stability Analysis of Very Soft Soils Using Geotextiles: The Role of Model Test and Finite Element Analysis (토목섬유로 보강한 연약지반의 안정도 해석: 모형실험과 유한요소해석)

  • 고홍석;고남영
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.36 no.1
    • /
    • pp.39-53
    • /
    • 1994
  • To investigate the behaviour of the embankment on very soft foundation reinforced geotex- files,the laboratory model test in order to analyze the elementary effects of geotextile reinfor- cement and the finite element program analyzing the stresses and deformations characteristics was carried out. A two-dimensional nonlinear finite element program called GEOTEXT(a modification of ISBILD) for the static analysis of embankment on very soft foundation reinforced geotextiles has been developed. Both linear and nonlinear hyperbolic stress-strain soil models are inclu- ded, and incremental and stage construction can be simulated. However, the program GEO- TEXT is not developed herein as an adaptable design tool for practicing engineer. It was found that the geotextile reinforcement significantly reduced the shear stresses in the foundation and decreased the vertical differential settlements at the top of the embank- ment. This influence was more pronounced as the tensile strength of the geotextile was increased.

  • PDF

The Ultimate Load Capacity of Plates by Elastic-Perfectly Plastic Model (탄성-완전소성모델에 의한 평판의 극한내하력 산정)

  • 박진환;정우성;우광성
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.12 no.1
    • /
    • pp.1-14
    • /
    • 1999
  • 선형탄성이론을 기초로 한 구조해석의 경우 사용하중상태에서의 변형과 응력은 만족할 만한 결과를 나타내지만, 항복후의 처짐과 파괴시의 극한하중 산정의 정확한 해석이 불가능하다. 평판의 극한해석시, 상한계 이론을 바탕으로 한 항복선 이론이 널리 사용되고 있으나 이론적으로 평판의 강도를 과대평가하게 된다. 그러므로, 임의의 하중조건과 경계조건에 대한 비선형 거동과 극한내하력을 산정할 수 있는 해석기법이 필요하다. 평판의 정확한 극한하중을 위해 p-Version 유한요소법을 제안하며, p-Version의 해석치를 범용 구조해석 프로그램인 ADINA의 결과와 문헌의 이론치와 비교하였다.

  • PDF

Mechanical Properties of Carbon Fiber/Si/SiC and Carbon Fiber/C/SiC Composites (탄소섬유/Si/SiC 및 탄소섬유/탄소/SiC 복합재의 기계적 물성)

  • 신동우;박삼식;김경도;오세민
    • Composites Research
    • /
    • v.12 no.3
    • /
    • pp.8-16
    • /
    • 1999
  • Carbon woven fabric/C/SiC composites were fabricated by multiple impregnations of carbon woven fabric/carbon preform with the polymer precursor of SiC, i.e., polycarbosilane. In addition, two kinds of low density carbon/carbon preforms which had different fiber volume fraction and fiber orientation, i.e., a carbon woven fabric(${\thickapprox}$55 vol%)/carbon and a chopped carbon fiber${\thickapprox}$40 vol%)/carbon composites, were reaction-bonded with a silicon melt at 1$700^{\circ}C$ in a vacuum to fabricate dense carbon fiber/Si/SiC composites. The reaction-bonding process increased the density to ~2.1 g/$cm^3$ from 1.6 g/$cm^3$ and 1.15 g/$cm^3$ of a carbon woven and a chopped carbon preforms, respectively. All of the composites fractured with extensive fiber pull-out. The higher the density the higher the stiffness and proportional limit stress. The mechanical properties obtained from a three-point bend and tension tests were compared. The ratios of the peak tensile stresses to the bending strengths of a carbon woven and a chopped carbon composites were about one-third, respectively. The carbon woven fabric/Si/SiC composites with density of 2.06 g/$cm^3$ showed ~120 MPa of ultimate strength and ~80 MPa of proportional limit in bend testing.

  • PDF

Fatigue Strength Evaluation of Bogie Frame of Urban Maglev Train (도시형 자기부상열차 대차 프레임의 피로강도 평가)

  • Han, Jeong Woo;Kim, Heung Sub;Bang, Je Sung;Song, See Yeob
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.7
    • /
    • pp.945-951
    • /
    • 2013
  • This study evaluated the fatigue strength of the bogie frame of an urban maglev train through fatigue analysis, cumulative damage, and fatigue tests based on a proposed fatigue evaluation method. The results of FEM analysis in which various load combinations were adopted showed that all data were under the fatigue limit of a butt welded joint made of A6005 in a Goodman diagram. The cumulative fatigue damage was calculated at the highest level from a bolt connecting the area of the electromagnetic pole in the casting block; however, the total sum was evaluated as D=0.808 based on $1{\times}10^7$ cycles, which indicates that it did not exceed the failure criteria. In addition, the results of the fatigue testshowed that there was no crack at any position in the bogie frame, which corresponded to the results of fatigue analyses.

Debris Flow Mobility: A Comparison of Weathered Soils and Clay-rich Soils (풍화토와 점성토 위주의 토석류 거동과 유동특성)

  • Jeong, Sueng-Won
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.1
    • /
    • pp.23-27
    • /
    • 2013
  • The risks of debris flows caused by climate change have increased significantly around the world. Recently, landslide disaster prevention technology is more focused on the failure and post-failure dynamics to mitigate the hazards in flow-prone area. In particular, we should define the soil strength and flow characteristics to estimate the debris flow mobility in the mountainous regions in Korea. To do so, we selected known ancient landslides area: Inje, Pohang and Sangju debris flows. Firstly we measured physical and mechanical properties: liquidity index and undrained shear strength by fall cone penetrometer. From the test results, we found that there is a possible relationship between liquidity index and undrained shear strength, $C_{ur}=(1.2/I_L)^{3.3}$, in the selected areas, even though they were different in geological compositions. Assuming that the yield stress is equal to the undrained shear strength at the initiation of sliding, we examined the flow characteristics of weathered soils in Korea. When liquidity index is given as 1, 1.5 and 3.0, the debris flow motion of weathered soils is compared with that of mud-rich sediments, which are known as low-activity clays. At $I_L=1$, it seems that debris flow could reach approximately 250m after 5 minutes. As liquidity index increased from 1 to 3, the debris flow propagation of weathered soils is twice than that of low-activity clays. It may be due to the fact that soil masses mixed with the ambient water and then highly fragmented during flow, thereby leading to the high mobility. The results may help to predict the debris flow propagation and to develop disaster prevention technology at similar geological settings, especially for the weathered soils, in Korea.

Empirical Rock Strength Logging in Boreholes Penetrating Sedimentary Formations (퇴적암에 대한 경험적 암석강도 추정에 대한 고찰)

  • Chang, Chan-Dong
    • Geophysics and Geophysical Exploration
    • /
    • v.7 no.3
    • /
    • pp.174-183
    • /
    • 2004
  • The knowledge of rock strength is important in assessing wellbore stability problems, effective sanding, and the estimation of in situ stress field. Numerous empirical equations that relate unconfined compressive strength of sedimentary rocks (sandstone, shale, and limestone, and dolomite) to physical properties (such as velocity, elastic modulus, and porosity) are collected and reviewed. These equations can be used to estimate rock strength from parameters measurable with geophysical well logs. Their ability to fit laboratory-measured strength and physical property data that were compiled from the literature is reviewed. While some equations work reasonably well (for example, some strength-porosity relationships for sandstone and shale), rock strength variations with individual physical property measurements scatter considerably, indicating that most of the empirical equations are not sufficiently generic to fit all the data published on rock strength and physical properties. This emphasizes the importance of local calibration before one utilizes any of the empirical relationships presented. Nonetheless, some reasonable correlations can be found between geophysical properties and rock strength that can be useful for applications related to wellhole stability where haying a lower bound estimate of in situ rock strength is especially useful.

A Property of Crack Propagation at the Specimen of CFRP with Layer Angle (적층각도를 지닌 CFRP 시험편에서의 크랙전파 특성)

  • Hwang, Gue Wan;Cho, Jae Ung;Cho, Chong Du
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.12
    • /
    • pp.1013-1019
    • /
    • 2016
  • CFRP is the composite material manufactured by the hybrid resin on the basis of carbon fiber. As this material has the high specific strength and the light weight, it has been widely used at various fields. Particularly, the unidirectional carbon fiber can be applied with the layer angle. CFRP made with layer angle has the strength higher than with no layer angle. In this paper, the property of crack growth due to each layer angle was investigated on the crack propagation and fracture behavior of the CFRP compact tension specimen due to the change of layer angle. The value of maximum stress is shown to be decreased and the crack propagation is slowed down as the layer angle is increased. But the limit according to the layer angle is shown as the stress is increased again from the base point of the layer angle of $60^{\circ}$. This study result is thought to be utilized with the data which verify the probability of fatigue fracture when the defect inside the structure at using CFRP of mechanical structure happens.