• 제목/요약/키워드: 학습 프레임워크

검색결과 325건 처리시간 0.021초

영상 처리와 CNN을 이용한 애완동물 영상 세부 분류 비교 (Comparison of Fine Grained Classification of Pet Images Using Image Processing and CNN)

  • 김지혜;고정환;권철희
    • 방송공학회논문지
    • /
    • 제26권2호
    • /
    • pp.175-183
    • /
    • 2021
  • 영상의 세부 분류에 대한 연구는 계속적으로 발전하고 있지만, 다형성의 성질을 갖는 동물에 대한 객체인식 연구는 더디게 진행되고 있다. 본 논문은 개와 고양이에 해당하는 애완동물 이미지만을 이용하여, 세부 분류인 동물의 종을 분류하는 방법 중 영상처리를 이용한 방법과 딥러닝을 이용한 방법을 비교하는 것을 목표로 한다. 본 논문에서 영상처리를 이용한 방법으로 객체 분리를 위해 Grab-cut 알고리즘을 사용하고, 영상 인코딩을 위해 Fisher Vector를 사용한 방법을 제안한다. 다른 방법으로는 기계학습으로 여러 분야에서 좋은 성과를 얻고 있는 딥러닝을 이용하였으며, 그 중에서도 이미지 인식 분야에서 뛰어난 성능을 보인 Convolutional Neural Network(CNN)과 구글에서 제공하는 오픈소스 기반 딥러닝 프레임워크인 Tensorflow를 활용하였다. 제안하는 각각의 방법에 대해 37종의 애완동물 이미지, 총 7,390장에 대해 실험하여 그 효과를 검증 및 비교하였다.

객체 인식 정확도 개선을 위한 이미지 초해상도 기술 (Image Super-Resolution for Improving Object Recognition Accuracy)

  • 이성진;김태준;이충헌;유석봉
    • 한국정보통신학회논문지
    • /
    • 제25권6호
    • /
    • pp.774-784
    • /
    • 2021
  • 객체 검출 및 인식 과정은 컴퓨터비전 분야에서 매우 중요한 과업으로써, 관련 연구가 활발하게 진행되고 있다. 그러나 실제 객체 인식 과정에서는 학습된 이미지 데이터와 테스트 이미지 데이터간 해상도 차이로 인하여 인식기의 정확도 성능이 저하되는 문제가 종종 발생한다. 이를 해결하기 위해 본 논문에서는 객체 인식 정확도 향상을 위한 이미지 초해상도 기법을 제안하여 객체 인식 및 초해상도 통합 프레임워크를 설계하고 개발하였다. 세부적으로는 11,231장의 차량 번호판 훈련용 이미지를 웹 크롤링, 인조데이터 생성 등을 통해 자체적으로 구축하고, 이를 활용하여 이미지 좌우 반전에 강인하도록 목적함수를 정의하여 이미지 초해상도 인공 신경망을 훈련시켰다. 제안 방법의 성능을 검증하기 위해 훈련된 이미지 초해상도 및 번호 인식기 1,999장의 테스트 이미지에 실험하였고, 이를 통해 제안한 초해상도 기법이 문자 인식 정확도 개선 효과가 있음을 확인하였다.

A Proposal of Sensor-based Time Series Classification Model using Explainable Convolutional Neural Network

  • Jang, Youngjun;Kim, Jiho;Lee, Hongchul
    • 한국컴퓨터정보학회논문지
    • /
    • 제27권5호
    • /
    • pp.55-67
    • /
    • 2022
  • 센서 데이터를 활용하여 설비의 이상 진단이 가능해졌다. 하지만 설비 이상에 대한 원인 분석은 미비한 실정이다. 본 연구에서는 센서 기반 시계열 데이터 분류 모델을 위한 해석가능한 합성곱 신경망 프레임워크를 제안한다. 연구에서 사용된 센서 기반 시계열 데이터는 실제 차량에 부착된 센서를 통해 수집되었고, 반도체의 웨이퍼 데이터는 공정 과정에서 수집되었다. 추가로 실제 기계 설비에서 수집된 주기 신호 데이터를 이용 하였으며, 충분한 학습을 위해 Data augmentation 방법론인 Scaling과 Jittering을 적용하였다. 또한, 본 연구에서는 3가지 합성곱 신경망 기반 모델들을 제안하고 각각의 성능을 비교하였다. 본 연구에서는 ResNet에 Jittering을 적용한 결과 정확도 95%, F1 점수 95%로 가장 뛰어난 성능을 보였으며, 기존 연구 대비 3%의 성능 향상을 보였다. 더 나아가 결과의 해석을 위한 XAI 방법론으로 Class Activation Map과 Layer Visualization을 제안하였으며, 센서 데이터 분류에 중요 영향을 끼치는 시계열 구간을 시각적으로 확인하였다.

Python 기반 AI 프로젝트에서 예외 제안을 위한 자동화 접근 방식 (An Automated Approach for Exception Suggestion in Python-based AI Projects)

  • 강민구;김순태;류덕산
    • 한국인터넷방송통신학회논문지
    • /
    • 제22권4호
    • /
    • pp.73-79
    • /
    • 2022
  • Artificial intelligence (AI) 프로젝트에 널리 사용되는 Python 언어는 Interpreter 언어로 Runtime 시에 오류가 발생한다. 오류로 인한 프로젝트의 실패를 방지하기 위해서는 사전에 예외적인 상황이 발생할 수 있는 코드에 대한 예외 처리가 필요하다. 특히, 많은 리소스를 필요로 하는 AI 프로젝트에서, 오랜 실행 후 발생하는 예외는 큰 리소스 낭비를 초래한다. 하지만, 예외 처리는 개발자의 경험에 의존하기 때문에 개발자들은 잡아야 할 적절한 예외를 결정하는데 어려움을 가진다. 이러한 필요성을 해결하기 위해 기존 예외 처리문을 학습하여 개발 중에 개발자에게 잡아야 할 예외를 제안해주는 접근 방법을 제안한다. 제안 방법은 try 블록의 소스 코드를 입력으로 받아 except 블록에서 처리되어야 할 예외들을 제안해준다. 우리는 2개의 프레임워크로 구성된 대규모 프로젝트에 대해 접근 방법을 평가한다. 우리의 평가 결과에 따르면, 예외 제안을 수행할 때 평균 AUPRC는 0.92 이상을 나타낸다. 연구 결과는 제안된 방법이 비교 모델들을 능가하는 예외 제안 성능으로 개발자의 예외 처리를 지원할 수 있음을 보여준다.

기계학습을 통한 복부 CT영상에서 요로결석 분할 모델 및 AI 웹 애플리케이션 개발 (Urinary Stones Segmentation Model and AI Web Application Development in Abdominal CT Images Through Machine Learning)

  • 이충섭;임동욱;노시형;김태훈;박성빈;윤권하;정창원
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제10권11호
    • /
    • pp.305-310
    • /
    • 2021
  • 의료분야 인공지능 기술이 분석과 알고리즘 개발에 중점을 두었으나 점차 제품으로 서비스하기 위한 Web 애플리케이션 개발로 변화되고 있다. 본 연구는 복부 CT 영상에서 요로결석(Urinary Stone) 분할모델과 이를 기반으로 한 인공지능 웹 애플리케이션에 대해 기술한다. 이를 구현하기 위해 의료영상 분야에서 이미지 분할을 목적으로 제안된 End-to-End 방식의 Fully-Convolutional Network 기반 모델인 U-Net을 사용하여 모델을 개발하였다. 그리고 Python 기반의 Flask라는 마이크로 웹 프레임워크를 사용하여 AWS 클라우드 기반 웹 애플리케이션으로 개발하였다. 끝으로 모델 서빙으로 요로결석 분할모델이 예측한 결과를 인공지능 웹 애플리케이션 서비스 수행 결과로 보인다. 제안한 AI 웹 애플리케이션 서비스가 선별 검사에 활용되기를 기대한다.

Vision Transformer를 활용한 비전 데이터 기반 자율주행자동차 사고 취약상황 예측 및 시나리오 도출 (Predicting Accident Vulnerable Situation and Extracting Scenarios of Automated Vehicleusing Vision Transformer Method Based on Vision Data)

  • 이우섭;강민희;윤영;황기연
    • 한국ITS학회 논문지
    • /
    • 제21권5호
    • /
    • pp.233-252
    • /
    • 2022
  • 자율주행자동차 상용화를 위해 자율주행자동차 안전성 제고를 위한 다양한 연구가 수행되고 있으며, 그 중 시나리오 연구가 안전성 평가에 직접적으로 연관되어 필수적으로 고려되고 있다. 그러나 기존 시나리오 제시의 경우 데이터 부재 및 전문가 개입으로 인해 객관성 및 설명력이 보완될 필요가 있다는 의견이 제시되고 있다. 이에 본 연구에서는 실제 사고 데이터 및 설명력 있는 인공지능 방법론인 ViT 모델을 활용하여 확장된 자율주행자동차 안전성 평가 시나리오를 제시한다. 활용 데이터에 최적화시킨 ViT 모델 학습 결과, 94% 정확도가 확인되었으며 Attention Map을 추가적으로 활용하여 설명력 있는 시나리오를 제시하였다. 본 연구를 통해 기존 시나리오 접근법의 한계를 보완하고 인공지능을 활용하여 새로운 안전성 평가 시나리오 수립 프레임워크를 제시할 수 있을 것으로 기대된다.

Development of AI-based Smart Agriculture Early Warning System

  • Hyun Sim;Hyunwook Kim
    • 한국컴퓨터정보학회논문지
    • /
    • 제28권12호
    • /
    • pp.67-77
    • /
    • 2023
  • 본 연구는 스마트팜 환경에서 진행된 혁신적인 연구로, 딥러닝을 기반으로 한 질병 및 해충 탐지 모델을 개발하고, 이를 지능형 사물인터넷(IoT) 플랫폼에 적용하여 디지털 농업 환경 구현의 새로운 가능성을 탐색하였다. 연구의 핵심은 Pseudo-Labeling, RegNet, EfficientNet 등 최신 ImageNet 모델과 전처리 방식을 통합하여, 복잡한 농업 환경에서 다양한 질병과 해충을 높은 정확도로 탐지하는 것이었다. 이를 위해 앙상블 학습 기법을 적용하여 모델의 정확도와 안정성을 극대화했으며, 평균 정밀도(mAP), 정밀도, 재현율, 정확도, 박스 손실 등의 다양한 성능 지표를 통해 모델을 평가하였다. 또한, SHAP 프레임워크를 활용하여 모델의 예측 기준에 대한 깊은 이해를 도모하였고, 이를 통해 모델의 결정 과정을 보다 투명하게 만들었다. 이러한 분석은 모델이 어떻게 다양한 변수들을 고려하여 질병 및 해충을 탐지하는지에 대한 중요한 통찰력을 제공하였다.

영상인식 및 분류용 인공지능 가속기의 최신 성능평가: MLPerf를 중심으로

  • 서영호;박성호;박장호
    • 방송과미디어
    • /
    • 제25권1호
    • /
    • pp.28-41
    • /
    • 2020
  • 인공지능의 고속화를 위한 인공지능용 혹은 딥러닝용 하드웨어 및 소프트웨어 시스템에 대한 수요가 폭발적으로 증가하고 있다. 또한 딥러닝 모델에 따라 다양한 추론 시스템이 끊임없이 연구되고 소개되고 있다. 최근에는 전세계에서 100개가 넘는 회사들에서 인공지능용 추론 칩을 개발하고 있고, 임베디드 시스템에서 데이터센터 솔루션에 이르기까지 다양한 분야를 위한 것들이 존재한다. 이러한 하드웨어의 개발을 위해서 12개 이상의 소프트웨어 프레임 워크 및 라이브러리가 활용되고 있다. 하드웨어와 소프트웨어가 다양한 만큼 이들을 중립적으로 평가하기가 매우 어려운 실정이다. 따라서 업계 표준의 인공지능을 위한 벤치마킹 및 평가기준이 필요한데, 이러한 요구로 인해 MLPerf 추론이 만들어졌다. MLPerf는 30개 이상의 기업과 200개 이상의 머신러닝 연구자 및 실무자들에 의해 운영되고, 전혀 다른 구조를 갖는 시스템을 비교할 수 있는 일관성 있는 규칙과 방법을 제시한다. MLPerf에 의해 제시된 규칙에 의해 2019년도에 처음으로 다양한 인공지능용 추론 하드웨어가 벤치마킹을 수행했다. 여기에는 14개의 회사에서 600개 이상의 추론 결과를 측정하였으며, 30개가 넘는 시스템이 이러한 추론에 사용되었다. 본 원고에서는 MLPerf의 학습과 추론을 중심으로 하여 최근에 개발된 다양한 회사들의 인공지능용 하드웨어, 즉 가속기 들의 성능을 살펴보고자 한다.

음악신호와 뇌파 특징의 회귀 모델 기반 감정 인식을 통한 음악 분류 시스템 (Music classification system through emotion recognition based on regression model of music signal and electroencephalogram features)

  • 이주환;김진영;정동기;김형국
    • 한국음향학회지
    • /
    • 제41권2호
    • /
    • pp.115-121
    • /
    • 2022
  • 본 논문에서는 음악 청취 시에 나타나는 뇌파 특징을 이용하여 사용자 감정에 따른 음악 분류 시스템을 제안한다. 제안된 시스템에서는 뇌파 신호로부터 추출한 감정별 뇌파 특징과 음악신호에서 추출한 청각적 특징 간의 관계를 회귀 심층신경망을 통해 학습한다. 실제 적용 시에는 이러한 회귀모델을 기반으로 제안된 시스템은 입력되는 음악의 청각 특성에 매핑된 뇌파 신호 특징을 자동으로 생성하고, 이 특징을 주의집중 기반의 심층신경망에 적용함으로써 음악을 자동으로 분류한다. 실험결과는 제안된 자동 음악분류 프레임 워크의 음악 분류 정확도를 제시한다.

KNN 알고리즘을 기반으로 하는 질병 예측 및 건강기능식품 추천 알고리즘에 관한 연구 (Research on Disease Prediction and Health Supplement Recommendation Algorithm Based on KNN Algorithm)

  • 추용주
    • 스마트미디어저널
    • /
    • 제13권8호
    • /
    • pp.49-57
    • /
    • 2024
  • 본 논문에서는 최근 고령화 사회로 진입하면서 건강기능식품에 높은 관심과 머신러닝의 발달로 질병을 고려한 맞춤형 건강기능식품을 추천할 수 있는 알고리즘을 제시하였다. KNN 알고리즘을 적용하여 질환에 대한 분석과 공개된 건강기능식품 정보, 국가 공공데이터의 매칭 기법을 적용하여, 맞춤형 건강기능식품 추천에 대한 플랫폼의 기초 워크프레임을 제시하였다. 신뢰성 높은 질환 대비 건강기능식품 사이의 매칭을 위해서, 상관관계를 분석하고, KNN알고리즘의 고도화를 위한 변수의 적절성과 정확도를 분석하고, 향후 공개되는 정보와 학습 모델의 개선을 통해 제안하는 시스템의 개선 방향에 대해서 도출하였다.