• 제목/요약/키워드: 학습 데이터

검색결과 6,438건 처리시간 0.036초

Gradient Boosting 기법을 활용한 다크넷 트래픽 탐지 및 분류 (Darknet Traffic Detection and Classification Using Gradient Boosting Techniques)

  • 김지혜;이수진
    • 정보보호학회논문지
    • /
    • 제32권2호
    • /
    • pp.371-379
    • /
    • 2022
  • 다크넷(Darknet)은 익명성과 보안을 바탕으로 하고 있어 각종 범죄 및 불법 활동에 지속적으로 악용되고 있으며, 이러한 오·남용을 막기 위해 다크넷 트래픽을 정확하게 탐지하고 분류하는 연구는 매우 중요하다. 본 논문에서는 그레디언트 부스팅 기법을 활용한 다크넷 트래픽 탐지 및 분류 기법을 제안하였다. CIC-Darknet2020 데이터셋에 XGBoost와 LightGBM 알고리즘을 적용한 결과, 99.99%의 탐지율과 99% 이상의 분류 성능을 나타내어 기존 연구에 비해 3% 이상 높은 탐지 성능과 13% 이상의 높은 분류 성능을 달성할 수 있었다. 특히, LightGBM 알고리즘의 경우, XGBoost보다 약 1.6배의 학습 시간과 10배의 하이퍼 파라미터 튜닝 실행시간을 단축하여 월등히 우수한 성능으로 다크넷 트래픽 탐지 및 분류를 수행하였다.

특허데이터 기반 한국의 인공지능 경쟁력 분석 : 특허지표 및 토픽모델링을 중심으로 (Analysis of Korea's Artificial Intelligence Competitiveness Based on Patent Data: Focusing on Patent Index and Topic Modeling)

  • 이현상;차오신;신선영;김규리;오세환
    • 정보화정책
    • /
    • 제29권4호
    • /
    • pp.43-66
    • /
    • 2022
  • 인공지능 기술의 발전과 더불어 세계 각국의 인공지능 기술 특허를 둘러싼 경쟁도 치열해지고 있다. 2000년~2021년간 미국 특허청의 인공지능 기술 특허출원은 꾸준히 증가하고 있는 가운데 2010년대 들어 보다 가파른 성장세를 기록하고 있다. 특허지표를 통해 한국의 인공지능 기술경쟁력을 분석한 결과, 청각지능, 시각지능 등의 세부 분야에서 특허활동성, 영향력, 시장성 등이 우위에 있는 것으로 평가된다. 그러나, 주요국과 비교하여 한국의 인공지능 기술 특허는 양적 활동성, 시장성 확보 측면에서는 상대적으로 우수하나 기술 파급력은 다소 열위에 있는 것으로 나타난다. 최근 인공지능 기술 토픽으로 노이즈 캔슬링, 음성인식 등은 감소한 반면 모델학습 최적화, 스마트센서, 자율주행 등이 활성화되면서 성장이 기대되고 있다. 한국의 경우 사기탐지/보안, 의료 비전러닝 등의 분야에서 특허출원 성과가 다소 부족하여 분발이 요구된다.

중국 내 자동차 산업 동향과 월별 판매량 시계열분석 (Analysis of Automobile Industry Trends and Demand Forecasting of Monthly Automobile Sales in Chin)

  • 왕첸양;이세원
    • 한국산업정보학회논문지
    • /
    • 제28권1호
    • /
    • pp.35-48
    • /
    • 2023
  • 본 연구에서는 급변하고 있는 세계 경제 환경 하에서 중국 자동차 산업의 발전 현황과 자동차 산업과 관련한 중국 정부의 정책을 살펴보고, 중국 내 소비자들의 자동차 구입에 대해 소비자 동향 조사를 실시하였다. 중국 정부의 강력한 국가 배출가스 규제정책과 내연기관 자동차 제조·판매 기준의 강화에도 불구하고 소비자들은 다양한 이유로 앞으로 자동차를 구매 시 내연기관차를 선택하겠다는 응답비율이 59.6%에 달하는 등 정부 정책과 소비자 인식 사이에는 적지 않은 차이가 존재하고 있음을 확인하였다. 또한, 최근의 중국 내 자동차 판매량의 감소 추세를 발견하여 2010년 1월부터 2020년 12월까지 월별 판매량을 학습용 데이터로, 2021년 1월부터 2022년 11월 동안의 판매량을 평가용으로 구분하여 향후 중국의 자동차 수요를 예측하는 시계열 모형들을 제안, 평가하였다. 그리고 각 시계열모형을 적용하였을 때의 2023년도의 월별 예측 판매량을 보였다.

적외선영상내 전력선 검출을 위한 하이브리드 방법 (A Hybrid Method for Recognizing Existence of Power Lines in Infrared Images)

  • 김종희;정찬호
    • 전기전자학회논문지
    • /
    • 제26권4호
    • /
    • pp.742-745
    • /
    • 2022
  • 본 논문에서 우리는 열화상에서 전력선 유무를 검출하는 영상처리 기법과 딥러닝 기반의 하이브리드 방법을 제안한다. 딥러닝은 다수의 데이터로부터 목적에 부합하는 특징 벡터를 학습할 수 있는 장점 덕분에 영상 인식, 객체 검출 등 다양한 분야에서 기존의 직접 설계한 특징 벡터를 사용하는 방법들보다 높은 성능을 달성할 수 있는 장점이 있고, 영상처리 기법은 사람의 직관을 그대로 적용할 수 있다는 장점이 있다. 두 장점을 모두 이용하여 열화상에서 전력선 유무를 검출하는 방법을 제안한다. 전력선 유무 검출에 가장 적합한 영상처리 기법을 찾기 위해 총 5가지 방법을 적용 및 비교하였고, 그 결과로 제안하는 방법은 기존의 영상처리 기반 방법과 딥러닝 기반의 방법 두 가지 모두에 비해 더 높은 99.48%의 정확도로 전력선 유무를 검출할 수 있다.

아쿠아포닉스의 생육 환경을 고려한 성장 측정 시스템의 설계 (A Design of Growth Measurement System Considering the Cultivation Environment of Aquaponics)

  • 이현섭;김진덕
    • 한국정보통신학회논문지
    • /
    • 제27권1호
    • /
    • pp.27-33
    • /
    • 2023
  • 웰빙과 건강관리에 대한 관심 증가와 미세먼지로 인한 공기질의 악화, 다양한 토양 및 수질 오염으로 인해 친환경 식재료에 대한 요구가 급증하고 있다. 이와 같은 현상의 해결책으로 아쿠아포닉스가 대두되고 있다. 그러나 최적의 생육 환경을 도출하는 기법이 선행되어야 한다. 본 논문에서는 기존 아쿠아포닉스의 특성을 고려하는 지능형 식물 성장 측정 시스템을 설계하고자 한다. 특히, 지능형 아쿠아포닉스 생산관리 모듈 중 고성능의 처리 자원을 갖지 않는 생산 현장에 적합한 시스템 설계에 주안점을 두고, 균일한 생육환경을 제공하는 경우의 학습 데이터 및 판단 시스템을 위한 모듈 구성 방안을 제안하고자 한다.

딥러닝 기반 전력선 통신 시스템의 임펄시브 잡음 제거 기법 (Cancellation Scheme of impusive Noise based on Deep Learning in Power Line Communication System)

  • 서성일
    • 한국인터넷방송통신학회논문지
    • /
    • 제22권4호
    • /
    • pp.29-33
    • /
    • 2022
  • 본 논문은 스마트 그리드를 위한 전력선 통신 시스템에서 데이터 신뢰성을 향상시키는 딥러닝 기반의 사전 간섭 제거 알고리즘에 대해 연구하였다. 본 논문에서 제안한 기법은 딥러닝 기술을 적용하여 채널에서 발생하는 임펄시브 잡음을 예측하여 제거하는 기술로서 송신단에서 딥러닝에 의해 학습된 잡음들을 활용하여 효과적으로 잡음을 제거함으로써 신호의 품질을 향상시킬 수 있다. 딥러닝 기술의 잡음 예측 정확도를 향상시키기 위해 기존의 잡음 형태를 데이터베이스화하여 활용하였다. 채널 모델로서 Middleton Class A 간섭 모델을 사용하였고, 비트 오류율을 평가하여 성능을 검증하였다. 모의실험을 통해 간섭 제거 기법이 적용된 시스템 모델과 이론적인 모델의 비트오류율을 비교하여 제안하는 시스템이 잡음을 효과적으로 제거하여 신호의 품질 성능을 향상시킬 수 있음을 확인하였다. 제안한 시스템 모델은 전력선 통신뿐만 아니라 일반적인 통신 시스템에서도 신호의 품질을 향상시킬 수 있도록 다양하게 적용이 가능하다.

파워쉘 기반 악성코드에 대한 역난독화 처리와 딥러닝 기반 탐지 방법 (Deobfuscation Processing and Deep Learning-Based Detection Method for PowerShell-Based Malware)

  • 정호진;유효곤;조규환;이상근
    • 정보보호학회논문지
    • /
    • 제32권3호
    • /
    • pp.501-511
    • /
    • 2022
  • 2021년에는 코로나의 여파로 랜섬웨어를 활용한 공격이 유행했으며 그 수는 매년 급증하고 있다. 그 중 파워쉘은 랜섬웨어에 주요 기술로 사용되고 있어 파워쉘 기반 악성코드 탐지 기법의 필요성은 증가하고 있으나 기존의 탐지기법은 난독화가 적용된 스크립트를 탐지하지 못하거나 역난독화에 시간이 오래 소요되는 한계가 존재한다. 이에 본 논문에서는 간단하고 빠른 역난독화 처리과정, Word2Vec과 CNN(Convolutional Neural Network)으로 구성되어 스크립트의 의미를 학습하고 특징을 추출해 악성 여부를 판단할 수 있는 딥러닝 기반의 분류 모델을 제안한다. 2021 사이버보안 AI/빅데이터 활용 경진대회의 AI 기반 파워쉘 악성 스크립트 탐지 트랙에서 제공된 1400개의 악성코드와 8600개의 정상 스크립트를 이용하여 제안한 모델을 테스트한 결과 기존보다 5.04배 빠른 역난독화 실행시간, 100%의 역난독화 성공률, 0.01의 FPR(False Positve Rate), 0.965의 TPR(True Positive Rate)로 악성코드를 빠르고 효과적으로 탐지함을 보인다.

머신러닝 기반 악성 URL 탐지 기법 (Machine Learning-Based Malicious URL Detection Technique)

  • 한채림;윤수현;한명진;이일구
    • 정보보호학회논문지
    • /
    • 제32권3호
    • /
    • pp.555-564
    • /
    • 2022
  • 최근 사이버 공격은 지능적이고 고도화된 악성코드를 활용한 해킹 기법을 활용하여 재택근무 및 원격의료, 자동산업설비를 공격하고 있어서 피해 규모가 커지고 있다. 안티바이러스와 같은 전통적인 정보보호체계는 시그니처 패턴 기반의 알려진 악성 URL을 탐지하는 방식이어서 알려지지 않은 악성 URL을 탐지할 수 없다. 그리고 종래의 정적 분석 기반의 악성 URL 분석 방식은 동적 로드와 암호화 공격에 취약하다. 본 연구에서는 악성 URL 데이터를 동적으로 학습하여 효율적으로 악성 URL 탐지하는 기법을 제안한다. 제안한 탐지 기법에서는 머신러닝 기반의 특징 선택 알고리즘을 사용해 악성 코드를 분류했고, 가중 유클리드 거리(Weighted Euclidean Distance, WED)를 활용하여 사전처리를 진행한 후 난독화 요소를 제거하여 정확도를 개선한다. 실험 결과에 따르면 본 연구에서 제안한 머신러닝 기반 악성 URL 탐지 기법은 종래의 방법 대비 2.82% 향상된 89.17%의 정확도를 보인다.

창의 미래교육 리더십 강화 직무연수에 참여한 초·중등학교 관리자의 만족도 및 효과성 분석 (The Satisfaction and View of Elementary and Secondary School Leaders Participated in the In-service Training for Creative Leadership)

  • 최영미;박남제
    • 정보교육학회논문지
    • /
    • 제26권1호
    • /
    • pp.55-64
    • /
    • 2022
  • 학교 관리자는 교사의 창의적인 역량을 향상시키는 환경, 문화, 구조를 창출하는데 중요한 역할을 담당하고 있지만, 학습자 및 교사 측면에서의 창의성 연구에 비해 학교 관리자의 창의 리더십에 대한 관심은 비교적 적었다. 이 논문에서는 창의 리더십 강화를 위한 초·중등 관리자의 직무연수에 참여한 만족도와 견해를 살펴보았다. 2020-I, 2020-II, 2021-I의 연수시기에 참여한 교장 및 교감 총 67명의 만족도 조사 자료와 답변을 일원분산분석 및 질적데이터코딩으로 분석하였다. 창의 리더십 강화를 위한 연수과정의 만족도, 연수운영에 대한 만족도, 개별 프로그램의 구성과 내용에 대한 만족도를 제시하였으며, 연수시기별 효과도 비교하였다. 참여한 창의 리더십 강화 연수에 대한 관리자의 평가 및 질적 개선에 대한 견해를 정리하였다. 직무연수 참여자의 피드백을 반영하여 창의 리더십 강화 초·중등학교 관리자 연수를 지속적으로 개선하고 양질의 직무연수를 제공할 필요가 있다.

딥러닝 기반 사용자 특징 정보 모델링을 통한 사용자 안전 프로파일링 (Deep Learning Based User Safety Profiling Using User Feature Information Modeling)

  • 김계경
    • 한국소프트웨어감정평가학회 논문지
    • /
    • 제17권2호
    • /
    • pp.143-150
    • /
    • 2021
  • 산업 현장에서 발생하는 다양한 안전사고의 원인이 되는 위험 요소를 분석하여 사용자에게 발생하는 안전사고를 줄일 수 있는 지능형 기술 개발에 대한 필요성이 커지고 있다. 본 논문에서는 산업 현장에서 발생하는 안전사고와 관련된 사용자 정보를 특정하고 모델링하여 사용자에게 일어나는 안전 사고를 미리 예방할 수 있는 사용자 안전 프로파일링에 대한 기술을 제안하였다. 사용자 프로파일링은 사용자의 혈압, 맥박, 움직임 등의 정보로부터 사용자의 생체, 작업 패턴, 작업 유형에 대한 안전 상태를 정(positive)과 부(negative)로 특정 및 모델링하고 딥러닝 인공지능 분석기술을 이용하여 사용자의 안전 상태를 정상과 비정상 상태로 분류할 수 있도록 하였다. 제안된 기술의 타당성을 검증하기 위하여 산업 현장에서 근무하는 사용자 5명을 대상으로 10종 이상의 사용자 정보를 리빙랩에서 획득하여 지능형 분석 시스템을 학습한 후 5개의 테스트 셋을 이용하여 정확도 시험을 반복 시행하여 93.6%의 사용자 안전 프로파일링 시스템의 정확도를 얻을 수 있었다.