• Title/Summary/Keyword: 학습 단계별

Search Result 537, Processing Time 0.026 seconds

Development of Design thinking-based AI education program (디자인 씽킹 기반 인공지능 교육 프로그램 개발)

  • Lee, Jaeho;Lee, Seunghoon
    • Journal of The Korean Association of Information Education
    • /
    • v.25 no.5
    • /
    • pp.723-731
    • /
    • 2021
  • In this study, the AI education program for elementary school students was developed and applied by introducing the design thinking process, which is attracting attention as a creative problem solving process. A design thinking-based AI education program was developed in the stages of Understanding AI, Identifying sympathetic problems, Problem definition, Ideate, Prototype, Test and sharing, and the development program was applied to elementary school students in 4th-6th grade. As a result of pre- and post-testing of students' computational thinking skills to confirm the effectiveness of the program, computational thinking skills increased by grade level, and students experienced a process of collaboration for creative problem solving based on insights gained from sympathetic problem finding. In addition, it was possible to get a glimpse of the attitude of using AI technology to solve problems, and it was confirmed that ideas were generated in the prototype stage and developed through communication between team members. Through this, the design thinking-based AI education program as one of the AI education for elementary school students guarantees the continuity of learning and confirms the possibility of providing an experience of the creative problem-solving process.

A Study on Instructional Design Model of Music Education Applying Flipped Learning in Elementary School (플립러닝(Flipped Learning)을 적용한 초등학교 음악과 교수설계 방안 연구)

  • Park, Jeong Hye;Lee, Dong Yub
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.1
    • /
    • pp.307-312
    • /
    • 2022
  • In line with the 4th industrial revolution and the innovative changes of the 21st century knowledge and information society, the education field where the 2015 revised curriculum is applied is facing a situation where it is necessary to consider various teaching and learning methods. Among them, interest in instructional design applying flipped learning suitable for future education is growing, but studies on classes using flipped learning in actual music and education are rare. In general music classes currently conducted in the elementary education field, it is insufficient to learn the musical function targeted in the class. Therefore, this study developed and validated an instructional design model for elementary school music and classes that applied flipped learning based on the ADDIE model, which is a systematic instructional design model, using the design and development research methodology. Based on the developed instructional design model, major issues for each stage were presented, and major educational implications in the development process were discussed.

Temporal Prediction of Ice Accretion Using Reduced-order Modeling (차원축소모델을 활용한 시간에 따른 착빙 형상 예측 연구)

  • Kang, Yu-Eop;Yee, Kwanjung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.3
    • /
    • pp.147-155
    • /
    • 2022
  • The accumulated ice and snow during the operation of aircraft and railway vehicles can degrade aerodynamic performance or damage the major components of vehicles. Therefore, it is crucial to predict the temporal growth of ice for operational safety. Numerical simulation of ice is widely used owing to the fact that it is economically cheaper and free from similarity problems compared to experimental methods. However, numerical simulation of ice generally divides the analysis into multi-step and assumes the quasi-steady assumption that considers every time step as steady state. Although this method enables efficient analysis, it has a disadvantage in that it cannot track continuous ice evolution. The purpose of this study is to construct a surrogate model that can predict the temporal evolution of ice shape using reduced-order modeling. Reduced-order modeling technique was validated for various ice shape generated under 100 different icing conditions, and the effect of the number of training data and the icing conditions on the prediction error of model was analyzed.

Development of an On-line Intelligent Embedded System for Detection the Leakage of Pipeline (실시간 누수 감지 가능한 매립형 지능형 배관 진단 시스템)

  • Lee, Changgil;Kim, Tae-Heon;Chang, Hajoo;Park, Seunghee
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.94-94
    • /
    • 2011
  • 배관 구조물에서는 내부 미세 균열에서부터 국부 좌굴, 볼트 풀림, 피로 균열 등과 같이 다양한 형태의 손상이 복합적으로 발생 가능하다. 이러한 복합 손상은 배관 구조물의 누수, 누유 등의 사고를 야기할 수 있다. 하지만 기존의 단일 스케일 계측 시스템으로부터 복합 손상에 의한 실시간 누수를 진단하기는 매우 어렵다. 본 연구 단계에서는 누수를 야기하는 복합 손상을 효율적으로 진단하기 위하여 선행 연구에서 제안된 압전센서를 이용한 자가 계측 회로 기반의 다중 스케일 계측 시스템을 구조물의 복합 손상 진단에 적용하였다. 자가 계측 회로 기반 다중 스케일 계측 시스템은 크게 두 가지 형태의 신호를 계측한다. 첫 번째 스케일은 임피던스 계측으로부터 특정 주파수 대역폭에 대한 구조 응답을 계측하며, 두 번째 스케일은 유도 초음파 계측으로부터 단일 중심 주파수에 해당하는 구조물의 응답을 계측한다. 복합 손상을 손상 유형별로 분류하기 위하여 E/M 임피던스(Electro-mechanical impedance)및 유도 초음파(Guided wave) 계측으로부터 추출한 특성을 이용하여 2차원 손상지수를 계산하고 이를 지도학습 기반 패턴인식 기법(Supervised learning based pattern recognition) 중 확률론적 신경망 기법(Probabilistic Neural Network, PNN)에 적용한다. 제안된 기법의 적용성 검토를 위하여 파이프 구조물에 인위적으로 다중 손상을 생성시켜 시험을 수행하였다. 본 연구에서 제안된 기법이 실제 배관 구조물에 성공적으로 적용된다면 손상 부재의 거동 및 구조물 성능의 손상에 대한 영향을 효율적으로 진단하고 평가함으로써 배관 구조물의 효과적인 유지관리가 가능할 것으로 예상된다.

  • PDF

A Study on the Content Framework of Algorithm Education in Primary and Middle Schools (초등학교와 중학교에서의 정보과학 교과를 위한 알고리즘 교육내용체계에 관한 연구)

  • Jeong, Young-Sik
    • Journal of The Korean Association of Information Education
    • /
    • v.18 no.2
    • /
    • pp.275-284
    • /
    • 2014
  • In this study, we analyzed algorithm curriculum in Korea, the United Kingdom, the United States, India, and Estonia. In order to teach 1st - 9th grade students computer algorithm, we suggested the algorithm framework based on the spiral curriculum, which is repeatable and progressive. The framework is divided into 4 areas, which includes understanding, expressing, evaluating, and using algorithms in daily life. Each area has 4 levels which are based on the students grade. We have to offer lectures for about computer OS to student teachers at the National Universities of Education; to develop textbooks and materials about algorithm; and to establish Information Science as a part of the primary school curriculum.

The effects of step learning according to level mainly performed at math room on the growth of problem-solving ability (수학실 중심의 수준별 단계학습이 문제해결력에 미치는 영향)

  • 박기석;신숙철
    • Journal of the Korean School Mathematics Society
    • /
    • v.2 no.1
    • /
    • pp.79-91
    • /
    • 1999
  • The aim of this study focused on student-centered learning not teacher-centered teaching in middle school math classes. This study was performed to check the growth of students' problem-solving abilities, learning attitudes and changes in learning motivation among affective characteristics. The results of this study is as followings: 1) The controlled group a heterogeneous group which had classes in a math room, had more meaningful growth than the uncontrolled group. The results of the study show that the problem-solving abilities of the high-leveled group were better than those of the low-leveled group. 2) The controlled group has shown meaningful difference in their mean in learning aptitude test and attitude test converted their score into 100 points than uncontrolled group, and various kinds of learning materials suitable for problem solving are proved as a good learning factor to induce students' motivation and interest. 3) Students prefer to have classes in a math room to the small-sized and large-numbered classrooms. The atmosphere in a math room is more suitable to improving their problem-solving abilities. In this context, the classes performed in a math room are fairly positive. Consequently, students' leveled learning activities performed in a math room can get their learning motivation and attention from those who are lack of interest and think math is difficult and be effective to increase their problem-solving abilities as a learning method for acquiring the whole course of solving the problems.

  • PDF

Predicting Win-Loss of League of Legends Using Bidirectional LSTM Embedding (양방향 순환신경망 임베딩을 이용한 리그오브레전드 승패 예측)

  • Kim, Cheolgi;Lee, Soowon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.9 no.2
    • /
    • pp.61-68
    • /
    • 2020
  • E-sports has grown steadily in recent years and has become a popular sport in the world. In this paper, we propose a win-loss prediction model of League of Legends at the start of the game. In League of Legends, the combination of a champion statistics of the team that is made through each player's selection affects the win-loss of the game. The proposed model is a deep learning model based on Bidirectional LSTM embedding which considers a combination of champion statistics for each team without any domain knowledge. Compared with other prediction models, the highest prediction accuracy of 58.07% was evaluated in the proposed model considering a combination of champion statistics for each team.

A Development of Curriculum Model on Information Ethics and Creation Tools for Elementary School Students (초등학생을 위한 정보윤리 및 창작도구 교육과정 모델 개발)

  • Kim, Hyunbae
    • Journal of The Korean Association of Information Education
    • /
    • v.19 no.4
    • /
    • pp.545-556
    • /
    • 2015
  • 2015 Software Education Guidelines aim to foster the capacity to solve the problem by extending the learners ICT literacy. However, this guidance does not include ICT literacy education content. This study develop a model curriculum on information ethics and creation tools for elementary school students. And 7 levels of learning contents and achievements on information ethics and creation tools are proposed in this study.

A Two-Stage Learning Method of CNN and K-means RGB Cluster for Sentiment Classification of Images (이미지 감성분류를 위한 CNN과 K-means RGB Cluster 이-단계 학습 방안)

  • Kim, Jeongtae;Park, Eunbi;Han, Kiwoong;Lee, Junghyun;Lee, Hong Joo
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.3
    • /
    • pp.139-156
    • /
    • 2021
  • The biggest reason for using a deep learning model in image classification is that it is possible to consider the relationship between each region by extracting each region's features from the overall information of the image. However, the CNN model may not be suitable for emotional image data without the image's regional features. To solve the difficulty of classifying emotion images, many researchers each year propose a CNN-based architecture suitable for emotion images. Studies on the relationship between color and human emotion were also conducted, and results were derived that different emotions are induced according to color. In studies using deep learning, there have been studies that apply color information to image subtraction classification. The case where the image's color information is additionally used than the case where the classification model is trained with only the image improves the accuracy of classifying image emotions. This study proposes two ways to increase the accuracy by incorporating the result value after the model classifies an image's emotion. Both methods improve accuracy by modifying the result value based on statistics using the color of the picture. When performing the test by finding the two-color combinations most distributed for all training data, the two-color combinations most distributed for each test data image were found. The result values were corrected according to the color combination distribution. This method weights the result value obtained after the model classifies an image's emotion by creating an expression based on the log function and the exponential function. Emotion6, classified into six emotions, and Artphoto classified into eight categories were used for the image data. Densenet169, Mnasnet, Resnet101, Resnet152, and Vgg19 architectures were used for the CNN model, and the performance evaluation was compared before and after applying the two-stage learning to the CNN model. Inspired by color psychology, which deals with the relationship between colors and emotions, when creating a model that classifies an image's sentiment, we studied how to improve accuracy by modifying the result values based on color. Sixteen colors were used: red, orange, yellow, green, blue, indigo, purple, turquoise, pink, magenta, brown, gray, silver, gold, white, and black. It has meaning. Using Scikit-learn's Clustering, the seven colors that are primarily distributed in the image are checked. Then, the RGB coordinate values of the colors from the image are compared with the RGB coordinate values of the 16 colors presented in the above data. That is, it was converted to the closest color. Suppose three or more color combinations are selected. In that case, too many color combinations occur, resulting in a problem in which the distribution is scattered, so a situation fewer influences the result value. Therefore, to solve this problem, two-color combinations were found and weighted to the model. Before training, the most distributed color combinations were found for all training data images. The distribution of color combinations for each class was stored in a Python dictionary format to be used during testing. During the test, the two-color combinations that are most distributed for each test data image are found. After that, we checked how the color combinations were distributed in the training data and corrected the result. We devised several equations to weight the result value from the model based on the extracted color as described above. The data set was randomly divided by 80:20, and the model was verified using 20% of the data as a test set. After splitting the remaining 80% of the data into five divisions to perform 5-fold cross-validation, the model was trained five times using different verification datasets. Finally, the performance was checked using the test dataset that was previously separated. Adam was used as the activation function, and the learning rate was set to 0.01. The training was performed as much as 20 epochs, and if the validation loss value did not decrease during five epochs of learning, the experiment was stopped. Early tapping was set to load the model with the best validation loss value. The classification accuracy was better when the extracted information using color properties was used together than the case using only the CNN architecture.

A Case Study of Elementary Students' Developmental Pathway of Spatial Reasoning on Earth Revolution and Apparent Motion of Constellations (지구의 공전과 별자리의 겉보기 운동에 대한 초등학생들의 공간적 추론 발달 경로의 사례 연구)

  • Maeng, Seungho;Lee, Kiyoung
    • Journal of The Korean Association For Science Education
    • /
    • v.38 no.4
    • /
    • pp.481-494
    • /
    • 2018
  • This study investigated elementary students' understanding of Earth revolution and its accompanied apparent motion of constellation in terms of spatial reasoning. We designed a set of multi-tiered constructed response items in which students described their own idea about the reason of consecutive movement of constellations for three months and drew a diagram about relative locations of the Sun, the Earth, and the constellations. Sixty-five sixth grade students from four elementary schools participated in the tests both before and after science classes on the relative movement of Earth and Moon. Their answers to the items were categorized inductively in terms of transforming frames of reference which are observed on the Earth and designed from the Space-based perspective. We analyzed those categories by the levels of spatial reasoning and depicted the change of students' levels between pre/post-tests so that we could get an idea on the preliminary developmental pathway of students' understanding of this topic. The lower anchor description was that constellations move around the Earth with geocentric perspective. Intermediate level descriptions were planar understanding of Earth movement, intuitive idea on constellation movement along with the Earth. Students with intermediate levels did not reach understanding of the apparent motion of constellations. As the upper anchor description students understood the apparent motion of constellations according to the Earth revolution and could transform their frames of reference between Earth-based view and Space-based view. The features as the case of evolutionary learning progressions and critical points of students' development for this topic were discussed.