• 제목/요약/키워드: 학습온도

검색결과 220건 처리시간 0.02초

광릉 낙엽활엽수 노령림의 CO2 수지 역학: 15년 관측으로부터의 교훈 (The Dynamics of CO2 Budget in Gwangneung Deciduous Old-growth Forest: Lessons from the 15 years of Monitoring)

  • 양현영;강민석;김준;류다운;김수진;천정화;임종환;박찬우;윤순진
    • 한국농림기상학회지
    • /
    • 제23권4호
    • /
    • pp.198-221
    • /
    • 2021
  • 1960-70년대 대규모 산림녹화 이후에 한국의 산림은 점차 노령화되고 있다. 노령림의 순 CO2 교환은 이론적으로 중립에 가깝지만, 교란이나 관리에 의해 CO2 흡원 또는 발원이 될 수 있다. 본 연구는 한국의 광릉 낙엽활엽수 노령림(GDK)의 CO2 수지 역학을 이해함으로써, 다음 두 가지 질문에 답하고자 하였다: (1) 보전되고 있는 GDK는 과연 이론적으로 알려져 있는 CO2 중립인가? (2) 관측된 CO2 수지의 경년 변동이 문헌에 보고된 조절 인자들과의 선형적인 인과관계로 설명이 가능한가? 이에 답하기 위해, 본 연구는 KoFlux GDK 관측지에서 에디 공분산 기술로 2006년부터 2020년까지 15년 동안 관측된 CO2 플럭스 자료와 생기상학적 자료를 분석하였다. 연구 결과, (1) GDK는 15년 자료를 평균해서 보면 약한 CO2 발원이며, 관측기간 동안 흡원과 발원 사이를 오갔으나 최근 5년 동안 CO2 발원으로서의 강도가 증가하고 있다. (2) 전천일사, 생장기간, 엽면적지수의 경년 변동은 총 일차생산량(Gross Primary Production, GPP)의 경년변동과 양의 상관관계(R2=0.32~0.45)가 있는 반면, 기온과 지표면 온도의 경년 변동은 생태계 호흡(Ecosystem Respiration, RE)의 경년 변동과 유의한 상관관계가 없었다. 또한, 관측기간 초반(첫 10년)의 CO2 플럭스와 기상요인 및 생물학적 요인으로 학습시킨 기계학습은 관측기간 후반(최근 5년)의 GPP와 RE의 경년 변동을 제대로 모사해내지 못했다. 단, 고사목에서 배출된 탄소 추정량이 CO2 발원으로의 전환에 일부 기여했을 것으로 추정된다. GDK의 장기 CO2 수지 역학에 대해 올바로 이해하고 해석하기 위해서는, 분석과 모델링을 위한 복잡계과학 기반의 새로운 프레임워크가 필요하다. 더불어, 플럭스 모니터링 및 자료 품질 유지와 함께 고사목과 교란을 지속적으로 모니터링하는 것이 중요함을 다시 한 번 확인하였다.

온라인 과학 기사 텍스트 마이닝을 통해 분석한 에너지 용어 사용의 맥락 (Analyzing Different Contexts for Energy Terms through Text Mining of Online Science News Articles)

  • 오치영;강남화
    • 과학교육연구지
    • /
    • 제45권3호
    • /
    • pp.292-303
    • /
    • 2021
  • 본 연구에서는 일상생활에서 에너지 용어가 사용되는 맥락을 알아보기 위하여 온라인 과학 기사를 수집하여 언어 네트워크, 토픽 모델링 분석 기법을 활용해 에너지 관련 기사에 사용된 용어의 빈도, 용어 네트워크, 기사의 주제를 분석하였다. 분석에 사용된 자료는 2018.3.1.부터 1년간의 온라인 과학 분야의 기사 중 에너지를 검색어로 하여 10개의 국내 중앙지에서 검색 및 선정된 2,171편이다. 이 기사들을 자연어 처리하여 51,224개의 문장과 507,901개의 단어로 데이터를 구성하였다. R 프로그램을 활용하여 용어 빈도수 분석 및 언어 네트워크 분석을 실시하였고, 에너지 용어 사용의 맥락 탐색을 위해 구조적 토픽 모델링 분석을 적용해 기사의 주제를 도출하였다. 기사에 사용된 용어 중 빈도수가 유난히 높은 용어는 기술, 연구, 개발로 새로운 소식을 알리는 기사의 특성을 반영한 것으로 나타났다. 한편, 기사 2편당 한 번 이상의 빈도로 사용되는 용어에는 산업 관련 용어(산업, 제품, 시스템, 생산, 시장)와 '전기', '환경'과 같이 에너지 관련 용어로 충분히 기대되는 용어들이 있었다. 한편, 에너지 관련 과학 수업에서 자주 사용되는 '태양', '열', '온도', '발전'도 빈도수 상위에 속하는 용어로 드러났다. 용어 네트워크 분석에서는 산업 및 기술과 관련된 용어와 기초과학 및 연구 관련 용어들이 약한 강도이지만 서로 군집을 이루는 것을 확인하였다. 한편, 에너지와 쌍을 이루는 용어의 분석에서는 '에너지 효율'을 비롯해 '에너지 절감', '에너지 소비' 등과 같이 에너지의 사용에 관한 용어들이 다수를 이루고 그 사용 빈도가 가장 높았다. 에너지 용어가 사용되는 맥락은 16개의 주제를 분류한 4가지 영역으로 '첨단산업', '산업', '기초과학', '환경 및 건강'으로 나타났다. 에너지 사용 관련 용어가 상당히 많이 사용된다는 결과는 에너지 수업의 시작점으로 에너지 저급화 개념의 도입이 효과적일 수 있음을 시사한다. 또한, 첨단산업이나 환경 및 건강의 맥락을 에너지 학습에 도입할 필요성도 보여준다. 본 연구에서 드러난 16개 주제에서 보이는 다양한 에너지 용어가 사용되는 맥락을 재구성해 에너지 관련 수업에 활용한다면 학생들이 학교에서의 에너지 학습과 일상적 상황을 통합적으로 인식하는 데 도움이 될 것이다.

복합 특징의 분리 처리를 위한 모듈화된 Coupled-ART 신경회로망 (A Coupled-ART Neural Network Capable of Modularized Categorization of Patterns)

  • 우용태;이남일;안광선
    • 한국통신학회논문지
    • /
    • 제19권10호
    • /
    • pp.2028-2042
    • /
    • 1994
  • ART(Adaptive Resonance Theory) 신경회로망과 같은 자기조직망에서 신호와 잡음을 적절히 정의한다는 것은 어려운 문제이다. 즉, 한 입력 패턴의 일부분이 어떤 패턴에서는 입력 패턴의 신호로 다루어지나 다른 패턴에서는 잡음으로 취급되어야 할 대도 있다. ART 신경회로망 모델은 신호와 잡음의 정의를 문맥과 학습에 따라 적절하게 규정하기 위하여 계산 단위를 자동적으로 자기척도(Self-Scaling 할 수 있는 기능을 가지고 있다. ART 모델에서의 이러한 자기 척도 기능은 입력 패턴들이 유사한 성질을 가진 경우에는 유효하게 잘 동작한다. 그러나 ART 모델은 기본적으로 하나의 경계 인수에 의해 패턴을 분류하기 때문에 여러가지 성질이 복합된 입력 패턴을 효율적으로 분류하기가 어렵다. 예를 들어 패턴들을 자세하게 분류하기 위하여 경계 인수의 값을 크게 하면 잡음으로 취급되어야 할 부분이 신호로 취급되어 불필요한 인식 부류가 발생한다. 또한 경계 인수를 작게 하면 패턴을 구별하기 위한 중요한 정보가 잡음으로 취급되는 경우가 발생하여 비효율적인 분류를 한다. 본 논문에서는 ART 모델의 이러한 문제점을 해결하기 위하여 복합 특징을 분리 처리할 수 잇는 모듈화된 Coupled-ART 신경회로망 모델을 제안하였다. Coupled-ART 신경회로망 모델은 신경회로망의 구조를 기능별로 모듈화하고 이러한 모듈들을 서로 밀착된 구조로 결합하여 확장된 기능을 수행하는 형태로 구성하였다. 이러한 모듈화된 신경회로망을 통해 패턴 인식 과정에서 다양한 크기나 성질을 가진 특징들에 대한 분류를 비슷한 크기나 성질을 가진 특징들끼리 분리하여 분류를 하였다. 그리고 본 논문에서 제안한 상위층에서 각 모듈의 처리 결과를 종합하여 최종적인 분류를 함으로써 기존의 ART 모델보다 더 효율적으로 패턴을 분류할 수 있다.28.8%$)에서 높고 60 및 40%수분구(水分區)($23.6{\sim}24.1%$)에서 낮은 편이었다. 그러나 옥수수의 조섬유함량(粗纖維含量)에 따라 큰 차이(差異)가 없었다. 건엽(乾葉)의 조단백질함량(粗蛋白質含量)에 따라 큰 차이(差異)가 없었다. 건엽(乾葉)의 조단백질함량(粗蛋白質含量)은 60%수분구(水分區)($14.2{\sim}21.6%$) 및 40%수분구(水分區)($13.8{\sim}16.0%$)가 다른 고토양수분구(高土壤水分區)($7.3{\sim}13.9%$)보다 높은 편이었다. 5. 건경중(乾莖中)의 조섬유함량(粗纖維含量)은 $24.6{\sim}36.7%$로서 건엽중(乾葉中)의 함량(含量)보다 월등히 높았고 조단백질함량(粗蛋白質含量)은 $2.0{\sim}5.3%$로서 건엽중(乾葉中)의 함량(含量)보다 현저히 낮았다. 특(特)히 P.931의 건경중(乾莖中)의 조섬유함량(粗纖維含量)은 다른 작물(作物)에 비해 현저(顯著)히 높은 편이었다.적차이(量的差異)를 나타냈다.間)에는 부(負)(-)의 상관(相關)이 있다.($P{\leq}0.01%$). 5. NEL 및 starch value 환경온도(環境溫度)가 상승(上昇)됨에 따라 감소(減少)된다. 4 엽기(葉期) sorghum식물(植物)의 환경온도(環境溫度)를 달리 하였을 때 NEL가치(價値)는 각각(各各) 4.87MJ($30/25^{\circ}C$), 5.46MJ($25/20^{\circ}C$) 및 5.81MJ/kg($18/8^{\circ}C$)로 변(變)하여 고온(高溫)에서 net energy lactation 축적(蓄積)이 크게 감소(減少)되었다.다.

  • PDF

초등 예비교사들의 법정계량단위에 대한 이해 (The Understanding of Elementary Pre-Service Teachers' on Legal Units)

  • 김성규;공영태
    • 과학교육연구지
    • /
    • 제33권1호
    • /
    • pp.111-121
    • /
    • 2009
  • 이 연구의 목적은 초등예비교사들의 법정계량단위에 대한 관심과 지식정도를 알아보는 것이었다. C 교대 초등예비교사 1,096명을 대상으로 법정계량단위에 대한 인식과 관심, 학년별, 성별, 계열별로 얼마만큼 알고 있는지를 설문을 통하여 변인별 빈도와 백분율(%)과 교차분석($x^2$)을 산출하여 분석해 보았다. 법정계량단위사용의 시기에 대한 관심은 52.1%가 잘 알지 못하였고, 단위사용에 대한 혼란을 느낀 경험을 60.1% 갖고 있다고 하였다. 시행공포후의 반응에서는 절반이상이 별 달라진 것이 없다고 대답하였다. 법정계량단위 사용의 정착을 위한 노력은 방송매체, 수업시간 그리고 캠페인, 연수의 순으로 습득해야한다고 하였다. 법정계량단위에 대하여 학년별, 성별 그리고 문과, 이과계열출신별로 지식정도를 알아본 결과로는 길이와, 넓이, 부피, 질량 단위 등은 학년별, 성별 그리고 이과, 문과계열출신별에 관계없이 따른 지식정도는 잘 알고 있었다. 3학년의 정답률이 가장 높았고 지식 정도 순서로는 3>4>2>1 순으로 나타났다. 3학년의 경우 교육과정상 단위 관련 과목을 배운 시기가 얼마 되지 않아 정답률이 높은 것으로 사료된다. 성별의 경우는 남학생보다 여학생이 정답률이 높았다. 온도는 남자가 정답을 택한 경우가 많았으며 여학생은 한 명도 정답을 선택하지 않았다. 시간의 경우 여학생들의 정답률이 남학생보다 2.7배 이상으로 높았다. 문과, 이과계출신별 지식정도는 부피와, 빛의 밝기는 동일하였고 온도를 제외하고는 예상과 달리 문과 계열출신학생이 정답률이 높았다. 특히 광도를 나타내는 SI단위인 '칸델라(cd)'보다 생활 속에서 사용하는 '럭스' 단위를 혼동하여 사용하는 것 같다. SI 기본단위는 학년별, 성별 그리고 문과, 이과계열별에 관계없이 잘 모르고 있었다. 또한 생활 속에서 쉽게 접하고 있는 유리 및 보조단위를 기준단위와 혼동하여 쓰는 경우도 확인할 수 있었다. 그래서 학생들이 자연스럽게 단위 학습이 될 수 있도록 지속적인 노력이 필요하다고 생각한다. 또한 정부의 미온적인 대처가 제도정착을 지연시키는 한 원인이 되기도 하므로 정부는 제도정착을 위해서 다른 나라의 경우를 거울삼아 하루빨리 정착 할 수 있도록 적극적인 노력을 해야 한다.

  • PDF

신경망 모델로 구성한 동해 울릉분지 표층 이산화탄소 분압과 변동성 (Sea Surface pCO2 and Its Variability in the Ulleung Basin, East Sea Constrained by a Neural Network Model)

  • 박소예나;이동섭;조영헌
    • 한국해양학회지:바다
    • /
    • 제21권1호
    • /
    • pp.1-10
    • /
    • 2016
  • 동해 표층 해수에서 측정한 이산화탄소 분압($pCO_2$)에 대해 기 확보된 자료는 해양-대기간 $CO_2$ 교환율을 정량화하고자 통계 기법을 적용하기에는 부족한 편이다. 이를 보완하기 위해 위성자료를 이용하여 관측이 이루어지지 않은 해역의 $pCO_2$를 신경망모델을 이용하여 채워 넣는(mapping) 연구를 시도하였다. 본 연구는 동해에서 현장관측자료가 가장 많이 축적된 울릉분지를 대상으로 2003년부터 2012년까지의 표층$pCO_2$자료와, Aqua 위성의 MODIS 센서로 관측한 해표면 온도(SST)와 엽록소(chlorophyll) 자료, 경위도 자료로 신경망모델을 구축하여 $pCO_2$ 분포도 작성과 변동성을 추정하고자 하였다. 신경망모델의 학습은 $pCO_2$ 관측자료와 모델결과값의 상관도가 95% 이상을 달성하도록 하였다. 모델 결과의 평균제곱근오차(RMSE)는 $19.2{\mu}atm$으로 관측자료의 변동 크기와 비교해서 훨씬 작은 수준이었다. SST와 chlorophyll에 연관된 $pCO_2$의 변동성을 살펴보면 chlorophyll 보다는 SST에 대해 더욱 강한 음의 상관 관계를 보였다. 모델이 출력한 $pCO_2$의 변동성은 SST가 내려감에 따라 커지는 경향을 보였다. $15^{\circ}C$ 이하에서는 $pCO_2$ 변동성에 대한 SST와 chlorophyll의 기여도가 뚜렷하게 나타났다. 반면 SST가 $15^{\circ}C$ 이상일 경우에는 $pCO_2$ 변동성은 SST와 chlorophyll의 변화에 대해 그리 민감하게 반응하지 않았다. 신경망모델 출력값으로 추정한 2003-2014년 사이의 울릉분지 표층수의 연평균 $pCO_2$ 증가율은 $0.8{\mu}atm$이었다. 신경망 모델이 울릉분지의 $pCO_2$에 대해 이전 연구보다 해상력과 오차가 향상된 $pCO_2$ 채워넣기를 가능케 해 준 점에 비추어 볼 때 국제정세에 따라 전역 관측이 수월하지 않은 동해의 탄소순환을 이해하는데 유용한 도구로 쓰일 수 있을 것으로 판단된다.

조경수 관리에 관한 온라인 질의응답 사례 분석 - 수목진단센터 온라인 상담 사례를 대상으로 - (Analysis on On-line Q&A Cases regarding Landscape Trees Management - Focused on Online Consultation Board at Tree Diagnostic Center -)

  • 임병을;이세희
    • 한국조경학회지
    • /
    • 제41권1호
    • /
    • pp.44-50
    • /
    • 2013
  • 조경수 관리시 발생하는 병충해 등의 문제에 대한 자문을 받기 위하여 관리 담당자는 나무병원에 진단 및 처방을 의뢰하고 있는데, 본 연구는 국내에서 수목진단센터로 인증된 서울대학교 식물병원, 충북대학교 식물종합병원 및 강원대학교 수목진단센터의 온라인 상담게시판에 등록된 조경수 관련 질의와 답변을 검토하여 조경관리자 및 관계자들이 주로 질의하는 조경수 관리상의 문제와 의문이 무엇인지 분석하고자 하였다. 그 결과, 질의자 중에 조경관계자가 81.4%로 대다수를 차지했으나, 질의시 조경수 진단에 필수적인 수목관리 이력 및 주변환경 설명을 한 경우가 11.5%에 불과할 정도로 조경관계자들이 수목진단에 관한 기초적 지식이나 관심이 부족함을 확인하였다. 그리고 조경수 관련 질의 263건 중 생리피해 질의가 94건, 35.8%로 가장 많은 건수를 나타냈다. 이어서 충해, 병해 순이었다. 표징이 없고 다양한 스트레스에 의해 발생하는 생리적 문제의 특성상 진단 및 처방의뢰를 가장 많이 하게 되는 것으로 판단된다. 생리피해의 원인으로는 수분스트레스와 온도스트레스가 가장 많은 편이었으며, 병해는 그 병의 종류가 다양하였고, 생리적 원인이 수반되는 복합피해도 많은 편이었다. 충해는 나방류에 의한 경우가 가장 많았다. 이와 같은 결과를 고려할 때, 조경 기술자와 학생이 조경수 관리의 필수 지식과 정보를 습득하고 관심도를 고취할 수 있도록 대학이나 기술자 교육기관에서 조경수 관리교육을 반드시 실시하여야 하며, 특히 수목 생리에 대한 심도있는 학습 기회 제공과 기술자 스스로의 노력이 요구된다. 또한 조경업에 대한 이해와 조경식재 기술 및 현장의 실정을 이해하는 조경식재 및 관리에 대해 전문적으로 자문할 수 있는 기관의 구성이 이루어져야 한다. 그리고 아직 기반이 갖추어지지 않은 조경수 관리분야의 체계성과 전문성 도모를 위해 집중적인 기술자 육성과 학계와 업계 등 관계자들의 연구가 필요하다.

BERTopic을 활용한 불면증 소셜 데이터 토픽 모델링 및 불면증 경향 문헌 딥러닝 자동분류 모델 구축 (Topic Modeling Insomnia Social Media Corpus using BERTopic and Building Automatic Deep Learning Classification Model)

  • 고영수;이수빈;차민정;김성덕;이주희;한지영;송민
    • 정보관리학회지
    • /
    • 제39권2호
    • /
    • pp.111-129
    • /
    • 2022
  • 불면증은 최근 5년 새 환자가 20% 이상 증가하고 있는 현대 사회의 만성적인 질병이다. 수면이 부족할 경우 나타나는 개인 및 사회적 문제가 심각하고 불면증의 유발 요인이 복합적으로 작용하고 있어서 진단 및 치료가 중요한 질환이다. 본 연구는 자유롭게 의견을 표출하는 소셜 미디어 'Reddit'의 불면증 커뮤니티인 'insomnia'를 대상으로 5,699개의 데이터를 수집하였고 이를 국제수면장애분류 ICSD-3 기준과 정신의학과 전문의의 자문을 받은 가이드라인을 바탕으로 불면증 경향 문헌과 비경향 문헌으로 태깅하여 불면증 말뭉치를 구축하였다. 구축된 불면증 말뭉치를 학습데이터로 하여 5개의 딥러닝 언어모델(BERT, RoBERTa, ALBERT, ELECTRA, XLNet)을 훈련시켰고 성능 평가 결과 RoBERTa가 정확도, 정밀도, 재현율, F1점수에서 가장 높은 성능을 보였다. 불면증 소셜 데이터를 심층적으로 분석하기 위해 기존에 많이 사용되었던 LDA의 약점을 보완하며 새롭게 등장한 BERTopic 방법을 사용하여 토픽 모델링을 진행하였다. 계층적 클러스터링 분석 결과 8개의 주제군('부정적 감정', '조언 및 도움과 감사', '불면증 관련 질병', '수면제', '운동 및 식습관', '신체적 특징', '활동적 특징', '환경적 특징')을 확인할 수 있었다. 이용자들은 불면증 커뮤니티에서 부정 감정을 표현하고 도움과 조언을 구하는 모습을 보였다. 또한, 불면증과 관련된 질병들을 언급하고 수면제 사용에 대한 담론을 나누며 운동 및 식습관에 관한 관심을 표현하고 있었다. 발견된 불면증 관련 특징으로는 호흡, 임신, 심장 등의 신체적 특징과 좀비, 수면 경련, 그로기상태 등의 활동적 특징, 햇빛, 담요, 온도, 낮잠 등의 환경적 특징이 확인되었다.

KOMPSAT-3A 전정색 영상의 윤곽 정보를 이용한 중적외선 영상 시인성 개선 (Improvement of Mid-Wave Infrared Image Visibility Using Edge Information of KOMPSAT-3A Panchromatic Image)

  • 이진민;김태헌;김한울;이홍탁;한유경
    • 대한원격탐사학회지
    • /
    • 제39권6_1호
    • /
    • pp.1283-1297
    • /
    • 2023
  • 중적외선(mid-wave infrared, MWIR) 영상은 피복 및 객체의 온도를 파악할 수 있어 환경, 국방 등 다양한 분야에서 핵심 데이터로 사용된다. KOMPSAT-3A 위성은 타 위성에 비해 높은 공간해상도의 MWIR 영상을 제공하지만, 광학(electro-optical, EO) 영상에 비해 상대적으로 낮은 시인성을 가져 활용성의 확대에 어려움을 겪는다. 이에 본 연구에서는 KOMPSAT-3A 전정색(panchromatic, PAN) 영상의 윤곽 정보를 기반으로 시인성이 높은 MWIR 융합 영상을 제작하고자 한다. 먼저, 이종 센서에서 취득된 PAN 영상과 MWIR 영상의 상대 기하오차를 제거하는 전처리를 수행하고, 딥러닝 기반 윤곽 정보 추출 기술인 Pixel difference network (PiDiNet)의 사전 학습 모델을 이용하여 PAN 영상에 대한 윤곽 정보를 추출한다. 이후 전처리된 MWIR 영상과 추출된 윤곽 정보를 중첩하여 객체 경계면이 강조된 MWIR 융합 영상을 제작한다. 제안 방법을 이용하여 서로 다른 세 지역에 대한 MWIR 융합 영상을 제작하였으며, 이를 시각적으로 분석하였다. 본 기법을 통해 제작된 MWIR 융합 영상은 지형 및 지물의 경계면이 강조되어 시인성이 개선되었으며, 세부적으로 관심 지역에 대한 열 정보를 전달할 수 있었다. 특히, MWIR 융합 영상에서는 저해상도의 원본 MWIR 영상에서 식별할 수 없었던 비행기, 선박 등의 객체를 육안으로 판독할 수 있었다. 본 연구는 가시적인 정보와 열 정보를 동시에 고려할 수 있는 단일 영상 제작 방법론을 제시하였으며, 이는 MWIR 영상의 활용성 확대에 이바지할 수 있을 것으로 사료된다.

Himawari-8 정지궤도 위성 영상을 활용한 딥러닝 기반 산불 탐지의 효율적 방안 제시 (Efficient Deep Learning Approaches for Active Fire Detection Using Himawari-8 Geostationary Satellite Images)

  • 이시현;강유진;성태준;임정호
    • 대한원격탐사학회지
    • /
    • 제39권5_3호
    • /
    • pp.979-995
    • /
    • 2023
  • 산불은 예측이 어려운 재해이기 때문에 실시간 모니터링을 통해 빠르게 대응하는 것이 중요하며, 정지 궤도 위성 영상은 광역을 짧은 시간 간격으로 모니터링할 수 있어 산불 탐지 분야에 활발히 이용되고 있다. 기존의 위성 영상 기반 산불 탐지 알고리즘은 밝기 온도의 통계량 분석을 통한 임계값 기반으로 이상치를 탐지하는 방향으로 진행되어 왔다. 그러나 강도가 약한 산불을 탐지하기 어렵거나, 적절한 임계값 설정의 어려움으로 일반화 성능이 저하되는 한계점이 있어 최근에는 기계학습을 이용한 산불 탐지 알고리즘들이 제시되고 있다. 현재까지는 random forest, VanillaConvolutional neural network (CNN), U-net 구조 등의 비교적 간단한 기법이 적용되고 있다. 따라서, 본 연구에서는 정지궤도 위성인 Advanced Himawari Imager를 이용하여 동아시아와 호주를 대상으로 State of the Art (SOTA)딥러닝 기법을 적용한 산불 탐지 알고리즘을 개발하고자 하였다. SOTA 모델은 EfficientNet과 lion optimizer를 적용하여 개발하고, Vanilla CNN 구조를 사용한 모델과 산불 탐지 결과를 비교하였다. EfficientNet은 동아시아와 호주에서 0.88 및 0.83의 F1-score를 기록함으로써 CNN (동아시아: 0.83, 호주: 0.78)에 비해 뛰어난 성능을 입증하였다. EfficientNet에 불균형 문제 해결을 위한 weighted loss, equal sampling, image augmentation 기법 적용 시, 동아시아와 호주에서 각각 0.92와 0.84의 F1-score를 기록함으로써 적용 전(동아시아: 0.88, 호주: 0.83)에 비하여 성능이 향상되었음을 확인하였다. 본 연구를 통하여 제시된 SOTA 딥러닝 기법의 산불 탐지에의 적용 가능성과 딥러닝 모델의 성능 향상을 위해 고려해야 할 방향은 향후 산불탐지 분야에 대한 딥러닝 적용에 도움이 될 것으로 기대된다.

라이시미터 데이터로 학습한 수학적 및 심층 신경망 모델을 통한 온실 토마토 증산량 추정 (Estimation of Greenhouse Tomato Transpiration through Mathematical and Deep Neural Network Models Learned from Lysimeter Data)

  • 메안 P 안데스;노미영;임미영;최경이;정정수;김동필
    • 생물환경조절학회지
    • /
    • 제32권4호
    • /
    • pp.384-395
    • /
    • 2023
  • 증산은 적정 관수 관리에 중요한 역할을 하므로 수분 스트레스에 취약한 토마토와 같은 작물의 관개 수요에 대한 지식이 필요하다. 관수량을 결정하는 한 가지 방법은 증산량을 측정하는 것인데, 이는 환경이나 생육 수준의 영향을 받는다. 본 연구는 분단위 데이터를 통해 수학적 모델과 딥러닝 모델을 활용하여 토마토의 증발량을 추정하고 적합한 모델을 찾는 것을 목표로 한다. 라이시미터 데이터는 1분 간격으로 배지무게 변화를 측정함으로써 증산량을 직접 측정했다. 피어슨 상관관계는 관찰된 환경 변수가 작물 증산과 유의미한 상관관계가 있음을 보여주었다. 온실온도와 태양복사는 증산량과 양의 상관관계를 보인 반면, 상대습도는 음의 상관관계를 보였다. 다중 선형 회귀(MLR), 다항 회귀 모델, 인공 신경망(ANN), Long short-term memory(LSTM), Gated Recurrent Unit(GRU) 모델을 구축하고 정확도를 비교했다. 모든 모델은 테스트 데이터 세트에서 0.770-0.948 범위의 R2 값과 0.495mm/min-1.038mm/min의 RMSE로 증산을 잠재적으로 추정하였다. 딥러닝 모델은 수학적 모델보다 성능이 뛰어났다. GRU는 0.948의 R2 및 0.495mm/min의 RMSE로 테스트 데이터에서 최고의 성능을 보여주었다. LSTM과 ANN은 R2 값이 각각 0.946과 0.944, RMSE가 각각 0.504m/min과 0.511로 그 뒤를 이었다. GRU 모델은 단기 예측에서 우수한 성능을 보였고 LSTM은 장기 예측에서 우수한 성능을 보였지만 대규모 데이터 셋을 사용한 추가 검증이 필요하다. FAO56 Penman-Monteith(PM) 방정식과 비교하여 PM은 MLR 및 다항식 모델 2차 및 3차보다 RMSE가 0.598mm/min으로 낮지만 분단위 증산의 변동성을 포착하는 데 있어 모든 모델 중에서 가장 성능이 낮다. 따라서 본 연구 결과는 온실 내 토마토 증산을 단기적으로 추정하기 위해 GRU 및 LSTM 모델을 권장한다.