• Title/Summary/Keyword: 학습개선

Search Result 3,355, Processing Time 0.028 seconds

Improving the prediction accuracy for LDL-cholesterol based on semi-supervised learning (준지도학습 기반 LDL-콜레스테롤 예측의 정확도 개선)

  • Yang, Su-Bhin;Kim, Min-Tae;Kwon, Su-Bin;Woo, Na-Hyun;Kim, Hak-Jae;Jeong, Tai-Kyeong;Lee, Sung-Ju
    • Annual Conference of KIPS
    • /
    • 2022.05a
    • /
    • pp.553-556
    • /
    • 2022
  • 이상지질혈증의 발병에 대한 조기 진단 및 관리하는 것은 중요한 문제이다. 이상지질혈증의 진단은 혈액계측 정보 중에서 네 가지 LDL, HDL, TG, 그리고 TC를 이용하여 진단하며, 이상지질혈증 관리를 위해서는 LDL을 추정하는 것이 중요하다. 본 논문에서는 나이, 성별, 그리고 BMI와 같은 신체계측 정보를 학습하여 LDL-콜레스테롤을 예측하기 위한 준지도학습(Semi-supervised learning) 기반 기계학습 방법을 제안한다. 제안 방법은 얕은 학습(Shallow Learning)기반의 MLP(Multi-Layer Perceptron)을 이용하고, 이상지질혈증 진단인자간의 상관관계를 고려하여 신체계측 정보로 예측된 HDL, TG, 그리고 TC을 이용하여 일반적인 기계학습을 이용한 예측방법의 정확도를 개선한다. 즉, 제안방법은 신체계측 정보를 이용하여 혈액계측 정보의 LDL, HDL, TG, 그리고 TC을 각각 예측하고, 신체계측에 혈액계측의 예측 정보를 추가하여 학습한 준지도학습 기반 얕은 네트워크를 설계한다. 실험결과, HDL, TG, 그리고 TC의 혈액예측 정보를 이용한 준지도학습 기반 LDL 예측 정확도는 71.4%로 신체계측 정보만을 이용한 예측 방법의 67.0% 보다 약 4.4% 개선할 수 있음을 확인한다.

A Study on improvement of education effectiveness evaluation model for educational serious games (교육용게임의 확산을 촉진시키기 위한 교육효과성평가모형의 개선)

  • Leem, Eek-Su;Wohn, Kwang-Yun
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.1330-1336
    • /
    • 2009
  • 게임의 교육적 목적으로의 활용에 대해 관심이 늘고 있다. 이러한 흐름에도 불구하고 교육 분야에서 교육용게임의 채택은 더딘 편이다. 교육용게임의 채택과 확산을 위해서는 교육용게임을 교육을 위해 선택할 수 있는 정보를 학습자와 학부모, 교사들에게 제공해 주는 것이 중요하다. 교육용게임의 효과성평가는 게임의 교육적 효과 및 가능성을 알려줄 수 있기 때문에 교육용게임의 채택과 확산을 위한 중요한 역할을 할 수 있다. 하지만 기존의 효과성평가방법을 사용한 연구는 학부모와 같은 의사결정권자에게 신뢰받지 못하고 있어, 교육용게임의 확산에 도움을 주지 못하고 있다. 뿐만 아니라 기존모형을 사용한 효과성평가 결과는 개발자들에게 게임개선을 위한 자료로서 활용할 수 없게 되어 있어 개발을 위한 개선자료로서 활용하지 못하고 있다. 따라서 교육용게임을 확산시키기 위해서는 기존의 효과성 연구방법개선 또는 수정하는 것이 요구된다. 본 연구는 기존의 교육효과성모형을 교육용게임개발을 이루고 있는 두 이론적 배경인 게임설계이론과 학습이론에 근거하여 기존 효과성평가방법의 문제점을 살펴보고 두 이론에서 공통적인 요소를 도출하여 게임에서 학습결과와 과정을 모두 평가하는 개선된 평가모형을 제안하였다. 기존의 효과성평가가 단순히 학습량을 측정하여 단순하게 효과성의 유무만 보여주고 있다면, 개선된 모형은 효과성 유무와 함께 게임에서 학습의 과정을 보여줌으로서 게임의 관찰 가능한 효과성을 보여줌으로서 혁신의 확산을 촉진할 수 있는 지각된속성(Perceived Attributes)에 대한 정보를 효과성평가의 결과로서 제공할 수 있다. 본 연구는 기존의 모형을 학부모 교사와 같은 교육 분야의 사람과 게임기획자 와 같은 개발자가 모두 만족 할 수 있는 결과를 보여 주는 효과성평가 모형으로 개선하였다는데 의의를 둘 수 있다. 이러한 연구를 통해 교육현장에서 교육용게임의 채택과 확산에 기여 할 수 있을 것으로 기대된다.

  • PDF

A Study on the Differences in Learning Capability according to the Demand and the Degree of Demand of Learning Program (학습 프로그램 수요 및 요구도에 따른 학습역량 차이연구)

  • Choi, Mee Soon;Jo, Hye Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.795-803
    • /
    • 2020
  • The purpose of this study is to verify the differences in learning capability according to the demand of learning programs. The participants of this study included 1,738 S University students. The results of the study are as follows. First, in learning capability according to participation in learning programs, we found statistically significant differences in the ability to organize information, resource utilization, self-awareness, self-improvement and sociality. Second, there were no statistically significant differences in the ability to organize information, resource utilization, self-awareness, self-improvement and sociality in participating in learning programs. Third, there were statistically significant differences in the ability to organize information, resource utilization, self-awareness, self-improvement and sociality in not participating in learning programs. Fourth, there were statistically significant differences in the ability to organize information, resource utilization, self-awareness, self-improvement and sociality in experiencing difficulties in learning. Fifth, learning capabilities in specific areas that students wanted to improve had no statistically significant differences in the ability to organize information, resource utilization, self-awareness. However, there were statistically significant differences in self-improvement and sociality.

퍼지 추론과 개선된 퍼지 RBF 네트워크를 이용한 컨테이너 식별자 인식

  • 주이환;김재용;김광백
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2004.11a
    • /
    • pp.195-202
    • /
    • 2004
  • 일반적으로 운송 컨테이너의 식별자들은 크기나 위치가 정형화되어 있지 않고 외부 잡음으로 인하여 식별자의 형태가 변형될 수 있기 때문에 일정한 규칙으로 찾기는 힘들다. 본 논문에서는 이러한 특성을 고려하여 컨테이너 영상에 대해 Canny 마스크를 이용하여 에지를 검출하고, 검출된 에지 정보에서 영상획득 시 외부 광원에 의해 수직으로 길게 발생하는 잡음들을 퍼지추론 방법을 적용하여 제거한 후에 수직 블록과 수평 블록을 검출하여 컨테이너의 식별자 영역을 추출하고 이진화 한다. 이진화된 식별자 영역에 대해 검정색의 빈도수를 이용하여 흰바탕과 민바탕을 구분하고 윤곽선 추적 알고리즘을 적용하여 개별 식별자를 추출한다. 추출된 개별 식별자의 인식은 개선된 퍼지 RBF 네트워크를 제안하여 적용한다. 제안된 퍼지 RBF 네트워크는 퍼지 C-Means 알고리즘을 중간층으로 적용하고 중간층과 출력층 간의 학습에는 일반화된 델타 학습 방법과 Delta-bar-Delta 알고리즘을 적용하여 학습 성능을 개선한다. 실제 컨테이너 영상을 대상으로 실험한 결과, 기존의 식별자 추출 방법보다 제안된 식별자 추출 방법이 개선되었고 기존의 퍼지 RBF 네트워크 보다 제안된 퍼지 RBF 네트워크가 컨테이너 식별자의 학습 및 인식에 우수함을 확인하였다.

  • PDF

Improvement of the Gonu game using progressive deepening in reinforcement learning (강화학습에서 점진적인 심화를 이용한 고누게임의 개선)

  • Shin, YongWoo
    • Journal of Korea Game Society
    • /
    • v.20 no.6
    • /
    • pp.23-30
    • /
    • 2020
  • There are many cases in the game. So, Game have to learn a lot. This paper uses reinforcement learning to improve the learning speed. However, because reinforcement learning has many cases, it slows down early in learning. So, the speed of learning was improved by using the minimax algorithm. In order to compare the improved performance, a Gonu game was produced and tested. As for the experimental results, the win rate was high, but the result of a tie occurred. The game tree was further explored using progressive deepening to reduce tie cases and win rate has improved by about 75%.

Car Plate Recognition using Morphological Information and Enhanced Neural Network (형태학적 정보와 개선된 신경망을 이용한 차량 번호판 인식)

  • 임은경;김광백
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.04a
    • /
    • pp.192-197
    • /
    • 2004
  • 본 논문에서는 수평ㆍ수직 에지의 형태학적 정보를 이용한 차량 번호판 추출과 개선된 RBF 네트워크를 이용한 차량 번호판 인식 시스템을 제안한다. 번호판 영역은 수평ㆍ수직 에지의 형태학적 정보를 이용하여 추출하고 개별 문자는 히스토그램 방법과 위치 정보를 이용한 방법에 윤곽선 추적 알고리즘을 병합하여 추출한다. 개별 문자 인식은 ARTI 알고리즘을 개선하여 지도 학습 방법과 결합한 개선된 신경망을 제안하여 차량 번호판 인식에 적용한다. 제안된 방법의 성능을 확인하기 위하여 트루 컬러 차량 영상 155개와 그레이 컬러 차량 영상 100개를 대상으로 실험한 결과, 수평ㆍ수직 에지의 형태학적 정보를 이용한 차량 번호판 추출 방법이 임계화를 이용한 차량 번호판 추출 방법, RGB와 HSI 컬러 정보를 각각 이용한 차량 번호판 추출 방법보다 추출률이 개선되었으며, 인식 성능도 개선된 신경망의 학습 알고리즘이 기존의 학습 알고리즘들보다 우수한 성능이 있음을 확인하였다.

  • PDF

Application to the Image Coding by the Modified Fuzzy Competitive Learning Network (수정 퍼지 경쟁 학습 네트워크를 이용한 이미지 코딩 응용)

  • Lee, Bum-Ro;Chung, Chin-Hyun
    • The Transactions of the Korea Information Processing Society
    • /
    • v.5 no.7
    • /
    • pp.1933-1942
    • /
    • 1998
  • 분류 벡터 양자화(classified vector quantization: CVQ)〔2의 부코드북을 설계함에 있어서, 경쟁 학습 네트워크〔5〕-〔7〕 는 소속도의 이분법적 표현으로 상당한 소속도를 가지는 벡터들이 학습 과정에 무시되는 경향을 가진다. 이를 개선하기 위해 제안된 퍼지 경쟁 학습 네트워크〔8〕는 각 클러스터가 연속적인 소속도를 가진다는 개념을 도입하여 이와 같은 문제들을 해결했다. 그러나 퍼지 경쟁 학습 네트워크를 CVQ에 적용할 경우, 각 부코드북의 크기를 시행착오로 결정해야 하는 문제점을 여전히 가지고 있으며, 이러한 문제점들의 개선을 위하여 본 논문에서는 수정 퍼지 경쟁 학습 네트워크(modified fuzzy competitive learning network)를 제안한다. 수정 퍼지 경쟁 학습 네트워크는 퍼지 학습 네트워크가 가지는 이 분법적 소속도를 연속적인 소속도로 확장하여, 학습 과정중에 나타날 수 있는 지역 최소점 도달을 억제하였다.

  • PDF

ART1-based Fuzzy Supervised Learning Algorithm (ART1 기반 퍼지 지도 학습 알고리즘)

  • Kim, Kwang-Baek
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.479-484
    • /
    • 2005
  • 본 논문에서는 오류 역전파 알고리즘에서 은닉층의 노드 수를 설정하는 문제와 ART1의 경계 변수의 설정에 따른 인식률이 저하되는 문제점을 개선하기 위해 ART1 알고리즘과 퍼지 단층 지도 학습 알고리즘을 결합한 ART1 기반 퍼지 지도 학습 알고리즘을 제안한다. 제안된 알고리즘은 가중치 조정에 승자 뉴런 방식을 도입하여 은닉층에 해당하는 클래스에 영향을 끼친 패턴들의 정보만 저장하게 하여 은닉층 노드로의 책임 분담에 의한 정체 현상이 일어날 가능성을 줄인다. 그리고 학습시간과 학습의 수렴성도 개선한다. 제안된 알고리즘의 학습 성능을 분석하기 위하여 주민등록번호 분류를 대상으로 실험한 결과, 제안된 방법이 기존의 신경망보다 경계 변수나 모멘트에 민감하지 않으며 학습 시간도 적게 소요되고 수렴성도 우수한 성능이 있음을 확인하였다.

  • PDF

Development and application of software education programs to improve Underachievement

  • Kim, Jeong-Rang;Lee, Soo-Hwan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.1
    • /
    • pp.283-291
    • /
    • 2021
  • In this paper, we propose the development and application of a software education program for underachievers. The software education program for underachieving students was developed in consideration of the characteristics of learner's suffering from underachievement and the educational effects of software education, and is meaningful in that it proposes a plan to improve the learning gap in distance learning. Learners can acquire digital literacy and learning skills by solving structured tasks in the form of courseware, intelligent tutoring, debugging, and artificial intelligence learning models in educational programs. Based on the effects of software education, such as enhancing logical thinking ability and problem solving ability, this program provides opportunities to solve fusion tasks to underachievers. Based on this, it is expected that it can have a positive effect on the overall academic work.

Re-Destyle: Exemplar-Based Neural Style Transfer using Improved Facial Destylization (Re-Destyle: 개선된 Facial Destylization 을 활용한 예시 기반 신경망 스타일 전이 연구)

  • Yoo, Joowon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.06a
    • /
    • pp.1339-1342
    • /
    • 2022
  • 예술적 스타일 전이는 예술 작품이 지닌 특징을 다른 이미지에 적용하는 이미지 처리의 오랜 화두 중 하나로, 최근에는 StyleGAN 과 같이 미리 학습된 GAN(생성적 적대 신경망)을 통해 제한된 데이터로도 고해상도의 예술적 초상화를 생성하도록 학습하는 연구가 다양한 방면에서 성과를 내고 있다. 본 논문에서는 2 가지 경로의 StyleGAN과 Facial Destylization 을 통해 고해상도의 예시 기반 스타일 전이를 달성한 DualStyleGAN 연구에 대해 소개하고, 기존 연구에서 사용된 Facial Destylization 방법이 지닌 한계점을 분석한 뒤, 이를 개선한 새로운 방법, Re-Destyle을 제안한다. 새로운 Re-Destyle 방법으로 Facial Destylization 을 적용할 경우 학습 시간을 기존 연구의 방법보다 20 배 이상 개선할 수 있으며 그 결과 1000 개 이하의 적은 데이터와 1~2 시간의 추가 학습만으로도 원하는 타겟 초상화 스타일에 대해 1024×1024 수준의 고해상도의 예시 기반 초상화 스타일 전이 및 이미지 생성 모델을 학습할 수 있다.

  • PDF