이상지질혈증의 발병에 대한 조기 진단 및 관리하는 것은 중요한 문제이다. 이상지질혈증의 진단은 혈액계측 정보 중에서 네 가지 LDL, HDL, TG, 그리고 TC를 이용하여 진단하며, 이상지질혈증 관리를 위해서는 LDL을 추정하는 것이 중요하다. 본 논문에서는 나이, 성별, 그리고 BMI와 같은 신체계측 정보를 학습하여 LDL-콜레스테롤을 예측하기 위한 준지도학습(Semi-supervised learning) 기반 기계학습 방법을 제안한다. 제안 방법은 얕은 학습(Shallow Learning)기반의 MLP(Multi-Layer Perceptron)을 이용하고, 이상지질혈증 진단인자간의 상관관계를 고려하여 신체계측 정보로 예측된 HDL, TG, 그리고 TC을 이용하여 일반적인 기계학습을 이용한 예측방법의 정확도를 개선한다. 즉, 제안방법은 신체계측 정보를 이용하여 혈액계측 정보의 LDL, HDL, TG, 그리고 TC을 각각 예측하고, 신체계측에 혈액계측의 예측 정보를 추가하여 학습한 준지도학습 기반 얕은 네트워크를 설계한다. 실험결과, HDL, TG, 그리고 TC의 혈액예측 정보를 이용한 준지도학습 기반 LDL 예측 정확도는 71.4%로 신체계측 정보만을 이용한 예측 방법의 67.0% 보다 약 4.4% 개선할 수 있음을 확인한다.
게임의 교육적 목적으로의 활용에 대해 관심이 늘고 있다. 이러한 흐름에도 불구하고 교육 분야에서 교육용게임의 채택은 더딘 편이다. 교육용게임의 채택과 확산을 위해서는 교육용게임을 교육을 위해 선택할 수 있는 정보를 학습자와 학부모, 교사들에게 제공해 주는 것이 중요하다. 교육용게임의 효과성평가는 게임의 교육적 효과 및 가능성을 알려줄 수 있기 때문에 교육용게임의 채택과 확산을 위한 중요한 역할을 할 수 있다. 하지만 기존의 효과성평가방법을 사용한 연구는 학부모와 같은 의사결정권자에게 신뢰받지 못하고 있어, 교육용게임의 확산에 도움을 주지 못하고 있다. 뿐만 아니라 기존모형을 사용한 효과성평가 결과는 개발자들에게 게임개선을 위한 자료로서 활용할 수 없게 되어 있어 개발을 위한 개선자료로서 활용하지 못하고 있다. 따라서 교육용게임을 확산시키기 위해서는 기존의 효과성 연구방법개선 또는 수정하는 것이 요구된다. 본 연구는 기존의 교육효과성모형을 교육용게임개발을 이루고 있는 두 이론적 배경인 게임설계이론과 학습이론에 근거하여 기존 효과성평가방법의 문제점을 살펴보고 두 이론에서 공통적인 요소를 도출하여 게임에서 학습결과와 과정을 모두 평가하는 개선된 평가모형을 제안하였다. 기존의 효과성평가가 단순히 학습량을 측정하여 단순하게 효과성의 유무만 보여주고 있다면, 개선된 모형은 효과성 유무와 함께 게임에서 학습의 과정을 보여줌으로서 게임의 관찰 가능한 효과성을 보여줌으로서 혁신의 확산을 촉진할 수 있는 지각된속성(Perceived Attributes)에 대한 정보를 효과성평가의 결과로서 제공할 수 있다. 본 연구는 기존의 모형을 학부모 교사와 같은 교육 분야의 사람과 게임기획자 와 같은 개발자가 모두 만족 할 수 있는 결과를 보여 주는 효과성평가 모형으로 개선하였다는데 의의를 둘 수 있다. 이러한 연구를 통해 교육현장에서 교육용게임의 채택과 확산에 기여 할 수 있을 것으로 기대된다.
Journal of the Korea Academia-Industrial cooperation Society
/
v.21
no.11
/
pp.795-803
/
2020
The purpose of this study is to verify the differences in learning capability according to the demand of learning programs. The participants of this study included 1,738 S University students. The results of the study are as follows. First, in learning capability according to participation in learning programs, we found statistically significant differences in the ability to organize information, resource utilization, self-awareness, self-improvement and sociality. Second, there were no statistically significant differences in the ability to organize information, resource utilization, self-awareness, self-improvement and sociality in participating in learning programs. Third, there were statistically significant differences in the ability to organize information, resource utilization, self-awareness, self-improvement and sociality in not participating in learning programs. Fourth, there were statistically significant differences in the ability to organize information, resource utilization, self-awareness, self-improvement and sociality in experiencing difficulties in learning. Fifth, learning capabilities in specific areas that students wanted to improve had no statistically significant differences in the ability to organize information, resource utilization, self-awareness. However, there were statistically significant differences in self-improvement and sociality.
Proceedings of the Korea Inteligent Information System Society Conference
/
2004.11a
/
pp.195-202
/
2004
일반적으로 운송 컨테이너의 식별자들은 크기나 위치가 정형화되어 있지 않고 외부 잡음으로 인하여 식별자의 형태가 변형될 수 있기 때문에 일정한 규칙으로 찾기는 힘들다. 본 논문에서는 이러한 특성을 고려하여 컨테이너 영상에 대해 Canny 마스크를 이용하여 에지를 검출하고, 검출된 에지 정보에서 영상획득 시 외부 광원에 의해 수직으로 길게 발생하는 잡음들을 퍼지추론 방법을 적용하여 제거한 후에 수직 블록과 수평 블록을 검출하여 컨테이너의 식별자 영역을 추출하고 이진화 한다. 이진화된 식별자 영역에 대해 검정색의 빈도수를 이용하여 흰바탕과 민바탕을 구분하고 윤곽선 추적 알고리즘을 적용하여 개별 식별자를 추출한다. 추출된 개별 식별자의 인식은 개선된 퍼지 RBF 네트워크를 제안하여 적용한다. 제안된 퍼지 RBF 네트워크는 퍼지 C-Means 알고리즘을 중간층으로 적용하고 중간층과 출력층 간의 학습에는 일반화된 델타 학습 방법과 Delta-bar-Delta 알고리즘을 적용하여 학습 성능을 개선한다. 실제 컨테이너 영상을 대상으로 실험한 결과, 기존의 식별자 추출 방법보다 제안된 식별자 추출 방법이 개선되었고 기존의 퍼지 RBF 네트워크 보다 제안된 퍼지 RBF 네트워크가 컨테이너 식별자의 학습 및 인식에 우수함을 확인하였다.
There are many cases in the game. So, Game have to learn a lot. This paper uses reinforcement learning to improve the learning speed. However, because reinforcement learning has many cases, it slows down early in learning. So, the speed of learning was improved by using the minimax algorithm. In order to compare the improved performance, a Gonu game was produced and tested. As for the experimental results, the win rate was high, but the result of a tie occurred. The game tree was further explored using progressive deepening to reduce tie cases and win rate has improved by about 75%.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2004.04a
/
pp.192-197
/
2004
본 논문에서는 수평ㆍ수직 에지의 형태학적 정보를 이용한 차량 번호판 추출과 개선된 RBF 네트워크를 이용한 차량 번호판 인식 시스템을 제안한다. 번호판 영역은 수평ㆍ수직 에지의 형태학적 정보를 이용하여 추출하고 개별 문자는 히스토그램 방법과 위치 정보를 이용한 방법에 윤곽선 추적 알고리즘을 병합하여 추출한다. 개별 문자 인식은 ARTI 알고리즘을 개선하여 지도 학습 방법과 결합한 개선된 신경망을 제안하여 차량 번호판 인식에 적용한다. 제안된 방법의 성능을 확인하기 위하여 트루 컬러 차량 영상 155개와 그레이 컬러 차량 영상 100개를 대상으로 실험한 결과, 수평ㆍ수직 에지의 형태학적 정보를 이용한 차량 번호판 추출 방법이 임계화를 이용한 차량 번호판 추출 방법, RGB와 HSI 컬러 정보를 각각 이용한 차량 번호판 추출 방법보다 추출률이 개선되었으며, 인식 성능도 개선된 신경망의 학습 알고리즘이 기존의 학습 알고리즘들보다 우수한 성능이 있음을 확인하였다.
The Transactions of the Korea Information Processing Society
/
v.5
no.7
/
pp.1933-1942
/
1998
분류 벡터 양자화(classified vector quantization: CVQ)〔2의 부코드북을 설계함에 있어서, 경쟁 학습 네트워크〔5〕-〔7〕 는 소속도의 이분법적 표현으로 상당한 소속도를 가지는 벡터들이 학습 과정에 무시되는 경향을 가진다. 이를 개선하기 위해 제안된 퍼지 경쟁 학습 네트워크〔8〕는 각 클러스터가 연속적인 소속도를 가진다는 개념을 도입하여 이와 같은 문제들을 해결했다. 그러나 퍼지 경쟁 학습 네트워크를 CVQ에 적용할 경우, 각 부코드북의 크기를 시행착오로 결정해야 하는 문제점을 여전히 가지고 있으며, 이러한 문제점들의 개선을 위하여 본 논문에서는 수정 퍼지 경쟁 학습 네트워크(modified fuzzy competitive learning network)를 제안한다. 수정 퍼지 경쟁 학습 네트워크는 퍼지 학습 네트워크가 가지는 이 분법적 소속도를 연속적인 소속도로 확장하여, 학습 과정중에 나타날 수 있는 지역 최소점 도달을 억제하였다.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
v.9
no.1
/
pp.479-484
/
2005
본 논문에서는 오류 역전파 알고리즘에서 은닉층의 노드 수를 설정하는 문제와 ART1의 경계 변수의 설정에 따른 인식률이 저하되는 문제점을 개선하기 위해 ART1 알고리즘과 퍼지 단층 지도 학습 알고리즘을 결합한 ART1 기반 퍼지 지도 학습 알고리즘을 제안한다. 제안된 알고리즘은 가중치 조정에 승자 뉴런 방식을 도입하여 은닉층에 해당하는 클래스에 영향을 끼친 패턴들의 정보만 저장하게 하여 은닉층 노드로의 책임 분담에 의한 정체 현상이 일어날 가능성을 줄인다. 그리고 학습시간과 학습의 수렴성도 개선한다. 제안된 알고리즘의 학습 성능을 분석하기 위하여 주민등록번호 분류를 대상으로 실험한 결과, 제안된 방법이 기존의 신경망보다 경계 변수나 모멘트에 민감하지 않으며 학습 시간도 적게 소요되고 수렴성도 우수한 성능이 있음을 확인하였다.
Journal of the Korea Society of Computer and Information
/
v.26
no.1
/
pp.283-291
/
2021
In this paper, we propose the development and application of a software education program for underachievers. The software education program for underachieving students was developed in consideration of the characteristics of learner's suffering from underachievement and the educational effects of software education, and is meaningful in that it proposes a plan to improve the learning gap in distance learning. Learners can acquire digital literacy and learning skills by solving structured tasks in the form of courseware, intelligent tutoring, debugging, and artificial intelligence learning models in educational programs. Based on the effects of software education, such as enhancing logical thinking ability and problem solving ability, this program provides opportunities to solve fusion tasks to underachievers. Based on this, it is expected that it can have a positive effect on the overall academic work.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2022.06a
/
pp.1339-1342
/
2022
예술적 스타일 전이는 예술 작품이 지닌 특징을 다른 이미지에 적용하는 이미지 처리의 오랜 화두 중 하나로, 최근에는 StyleGAN 과 같이 미리 학습된 GAN(생성적 적대 신경망)을 통해 제한된 데이터로도 고해상도의 예술적 초상화를 생성하도록 학습하는 연구가 다양한 방면에서 성과를 내고 있다. 본 논문에서는 2 가지 경로의 StyleGAN과 Facial Destylization 을 통해 고해상도의 예시 기반 스타일 전이를 달성한 DualStyleGAN 연구에 대해 소개하고, 기존 연구에서 사용된 Facial Destylization 방법이 지닌 한계점을 분석한 뒤, 이를 개선한 새로운 방법, Re-Destyle을 제안한다. 새로운 Re-Destyle 방법으로 Facial Destylization 을 적용할 경우 학습 시간을 기존 연구의 방법보다 20 배 이상 개선할 수 있으며 그 결과 1000 개 이하의 적은 데이터와 1~2 시간의 추가 학습만으로도 원하는 타겟 초상화 스타일에 대해 1024×1024 수준의 고해상도의 예시 기반 초상화 스타일 전이 및 이미지 생성 모델을 학습할 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.