• Title/Summary/Keyword: 하층제트

Search Result 18, Processing Time 0.024 seconds

A Study on the Heavy Rainfall Cases Associated with Low Level Jet Inflow along the Changma Front (장마전선상에서 하층제트 유입으로 인한 집중호우에 관한 연구)

  • Choi, Ji-Young;Shin, Ki-Chang;Ryu, Chan-Su
    • Journal of Integrative Natural Science
    • /
    • v.4 no.1
    • /
    • pp.44-57
    • /
    • 2011
  • In general, heavy rainfall in Korea is mostly associated with inflow of 850hPa low-level jet. It transports abundant heat and moisture flux to the Changma front. In this study, synoptic characteristics of heavy rainfall in Korea from a case study is examined by classifying heavy rainfall cases with synoptic patterns, in particular distribution of upper- and low-level jets, western North Pacific high, and moisture flux. The surface and upper-level weather charts including auxiliary analysis chart and radar and satellite images obtained from the Korea Meteorological Administration, and 500hPa geopotential heights from NCEP/NCAR are used and then KLAPS is applied to understand the local atmospheric structure associated with heavy rainfall. Results show that maximum frequency in 60 heavy rainfall cases with more than 150mm/day appears in the Changma type of 43 cases (a proportion in relation to a whole is 52%) including the combined Changma types with typhoon and cyclone. As indicated in previous studies, most heavy rainfall cases are related to inflow of low-level jet. In addition, synoptic characteristics based on the analyses of weather charts, radar and satellite images, and KLAPS in heavy rainfall case of 12 July, 2009 reveal that the atmospheric vertical structure in particular equivalent potential temperature favorable for effective inflow of warm and moist southwesterly into the Changma front is linked to large potential instability and the strong convergence accompanied with low-level jet around Suwon contributes to atmospheric upsliding along the Changma front, producing heavy rainfall.

Synoptic Characteristics of the Main Path Types of 850hPa Surface Water Vapor Flux for Heavy Changma Rainfall in the South Coastal Region of Korea (한국 남해안의 장마철 호우 시 850hPa 등압면 수증기 수송 주 경로 유형의 종관 특성)

  • Park, Byong-Ik
    • Journal of the Korean association of regional geographers
    • /
    • v.17 no.2
    • /
    • pp.150-166
    • /
    • 2011
  • This study aims to investigate the differences of synoptic characteristics and frontal structures over East Asia according to the main path types of water vapor flux (WVF) of 850hPa surface in cases of the heavy rainfall in the south coastal region of Korea during the Changma season (June and July), In the cases of type A in which the main path of WVF is running from the South china Sea via the South china to the South Sea of Korea, the North Pacific subtropical anticyclone (NPSA) expands to the South China and strong cyclones appear in the Yellow Sea. In cases of type B and C in those the main paths of WVF are running from the South China Sea via the Western Pacific Ocean near Taiwan to the South Sea and from the Western North Pacific Ocean to the South Sea respectively, tropical cyclones appear frequently near Taiwan and the NPSA shifts northward. In the case of type D in which the main path of WVF appear only near the South Sea, strong cyclones appear near the Yellow Sea. In all cases upper jets are intensified in the northern part of the heavy rainfall region and low-level jets appear near the main paths of WVF. In the view of frontal structure, deep active-type of the Changma front is identified in most cases of all types. In this point the Changma season is different from the Baiu season in Western Japan where many cases of shallow active-type of the Baiu front appear.

  • PDF

Distribution of Precipitation on the Korean Peninsula Associated with the Weakening of Tropical Cyclones (태풍의 약화와 관련된 한국의 강수량 분포)

  • Hwang, Ho-Seong;Byun, Hi-Ryong;Lee, Sang-Min;Choi, Ki-Seon;Lee, Ji-Sun
    • Journal of the Korean earth science society
    • /
    • v.31 no.4
    • /
    • pp.322-334
    • /
    • 2010
  • Spatiotemporal characteristics of precipitation in Korea, associated with the weakening of Tropical Cyclones (TCs) around the Korean Peninsula ($32-36^{\circ}N$, $122-132^{\circ}E$) over the last 30 years (1979-2008), were investigated. Weakened TCs are classified as WEC (Weakened to Extratropical Cyclone) and WTD (Weakened to Tropical Depression). In WEC, precipitation was evenly distributed all over the Korean Peninsula and the greater precipitation was recorded in the southern coast. In WTD, the most precipitation was recorded in the southern coast but low precipitation was recorded in the central and inland areas of Korea. The difference of precipitation between WEC and WTD was not statistically significant in Region 2 (Jeollanam-do, Gyeongsangnam-do, southeastern part of Gyeongsangbuk-do, Jeju-do); however, the precipitation resulting from WEC was greater than that resulting from WTD in Region 1 (central area of Korea, Jeollabuk-do, inland of Gyeongsangbuk-do). In WEC, the developed upper-level potential vorticity (PV) and low-level temperature trough shifted to the northwest of TCs approaching Korea. In addition, an upper-level jet stream and strong divergence field were observed to the northeast of the TCs. It was assumed that these meteorological factors had induced baroclinic instability and diabatic process, which created a large precipitation area around the TCs. However, the intense PV, temperature trough, jet stream were not observed in WTD, which created a small precipitation area around the TCs.

Characteristics of Atmospheric Circulation over East Asia Associated with Unusual Climate of Korea in Winter 2006/2007 (2006/2007 겨울철 한반도 이상 기후와 관련된 동아시아 지역 대기 순환의 특성)

  • Lee, Hyun-Soo;Jhun, Jong-Ghap;Kang, In-Sik;Moon, Byung-Kwon
    • Journal of the Korean earth science society
    • /
    • v.28 no.3
    • /
    • pp.374-387
    • /
    • 2007
  • We examined the characteristics of atmospheric circulation over East Asia to find the causes of the unusual warm winter 2006/2007 in Korea. During that time, the anomalous atmospheric conditions are characterized by the weakening of the Siberian High and the Aleutian Low, the enhancement of low-level south easterlies near Korea, and the weakening of upper-level jet to the south of Japan. These patterns are considerably associated with the atmospheric condition of non-blocking year over the Siberia (60-140E). In addition, both El $Ni\widetilde{n}o$ and Arctic Oscillation (AO) are likely to induce those patterns. Therefore, it is suggested that the anomalous atmospheric states related to non-blocking flow, El $Ni\widetilde{n}o$, and the positive phase of AO are responsible for the warmest winter season in 2006/2007 for the period of 1958/1959-2006/2007.

An Analysis of Model Bias Tendency in Forecast for the Interaction between Mid-latitude Trough and Movement Speed of Typhoon Sanba (중위도 기압골과 태풍 산바의 이동속도와의 상호작용에 대한 예측에서 모델 바이어스 경향분석)

  • Choi, Ki-Seon;Wongsaming, Prapaporn;Park, Sangwook;Cha, Yu-Mi;Lee, Woojeong;Oh, Imyong;Lee, Jae-Shin;Jeong, Sang-Boo;Kim, Dong-Jin;Chang, Ki-Ho;Kim, Jiyoung;Yoon, Wang-Sun;Lee, Jong-Ho
    • Journal of the Korean earth science society
    • /
    • v.34 no.4
    • /
    • pp.303-312
    • /
    • 2013
  • Typhoon Sanba was selected for describing the Korea Meteorological Administration (KMA) Global Data Assimilation Prediction System (GDAPS) model bias tendency in forecast for the interaction between mid-latitude trough and movement speed of typhoon. We used the KMA GDAPS analyses and forecasts initiated 00 UTC 15 September 2012 from the historical typhoon record using Typhoon Analysis and Prediction System (TAPS) and Combined Meteorological Information System-3 (COMIS-3). Sea level pressure fields illustrated a development of the low level mid-latitude cyclogenesis in relation to Jet Maximum at 500 hPa. The study found that after Sanba entered the mid-latitude domain, its movement speed was forecast to be accelerated. Typically, Snaba interacted with mid-latitude westerlies at the front of mid-latitude trough. This event occurred when the Sanba was nearing recurvature at 00 and 06 UTC 17 September. The KMA GDAPS sea level pressure forecasts provided the low level mid-latitude cyclone that was weaker than what it actually analyzed in field. As a result, the mid-latitude circulations affecting on Sanba's movement speed was slower than what the KMA GDAPS actually analyzed in field. It was found that these circulations occurred due to the weak mid-tropospheric jet maximum at the 500 hPa. In conclusion, the KMA GDAPS forecast tends to slow a bias of slow movement speed when Sanba interacted with the mid-latitude trough.

Atmospheric Vertical Structure of Heavy Rainfall System during the 2010 Summer Intensive Observation Period over Seoul Metropolitan Area (2010년 여름철 수도권 집중관측기간에 나타난 호우 시스템의 대기연직구조)

  • Kim, Do-Woo;Kim, Yeon-Hee;Kim, Ki-Hoon;Shin, Seung-Sook;Kim, Dong-Kyun;Hwang, Yoon-Jeong;Park, Jong-Im;Choi, Da-Young;Lee, Yong-Hee
    • Journal of the Korean earth science society
    • /
    • v.33 no.2
    • /
    • pp.148-161
    • /
    • 2012
  • The intensive observation (ProbeX-2010) with 6-hour launches of radiosonde was performed over Seoul metropolitan area (Dongducheon, Incheon Airport, and Yangpyeong) from 13 Aug. to 3 Sep. 2010. Five typical heavy rainfall patterns occurred consecutively which are squall line, stationary front, remote tropical cyclone (TC), tropical depression, and typhoon patterns. On 15 Aug. 03 KST, when squall line developed over Seoul metropolitan area, dry mid-level air was drawn over warm and moist low-level air, inducing strong convective instability. From 23 to 26 Aug and from 27 to 29 Aug. Rainfall event occurred influenced by stationary front and remote TC, respectively. During the stationary frontal rainy period, thermal instability was dominant in the beginning stage, but dynamic instability became strong in the latter stage. Especially, heavy rainfall occurred on 25 Aug. when southerly low level jet formed over the Yellow Sea. During the rainy period by the remote TC, thermal and dynamic instability sustained together. Especially, heavy rainfall event occurred on 29 Aug. when the tropical air with high equivalent potential temperature (>345 K) occupied the deep low-middle level. On 27 Aug. and 2 Sep. tropical depression and typhoon Kompasu affected Seoul metropolitan area, respectively. During these events, dynamic instability was very strong.

Influence of Spring Warming in the Arctic-East Asia Region on the Arctic Oscillation and Dust Days in Korea Attributed to Dust Storms (북극-동아시아 지역의 봄철 온난화가 북극 진동-한국의 황사 사례일의 종관 기상에 미치는 영향 분석)

  • Ji-Sun Kim;Jae-Hee Cho;Hak-Sung Kim
    • Journal of the Korean earth science society
    • /
    • v.45 no.2
    • /
    • pp.121-135
    • /
    • 2024
  • This study examined the influence of near-surface atmospheric warming in the Arctic-East Asia region during spring (March-May) from 1991 to 2020 on the synoptic-scale meteorology of dust storm-induced dust days in Seoul, Korea, in response to the Arctic Oscillation. Increased springtime warming in the Arctic-East Asia region correlated with a reduction of six days in the occurrence of dust storm-induced dust days in Seoul, Korea, along with a decline in the intensity of these days by -1.6 ㎍ m-3yr-1 in PM10 mass concentration. The declining number of dust storm-induced dust days in Korea during the 2010s was the result of synoptic-scale meteorological analysis, which showed increased high-pressure activity as indicated by the negative potential vorticity unit. Moreover, a distinct pattern emerged in the distribution of dust storm-induced dust days in Korea based on the Arctic Oscillation Index (AOI), showing an increase in negative AOI and a decrease in positive AOI. Although the northward shift of the polar jet weakened the southerly low-pressure system activity over Mongolia and northern China, a reinforced high-pressure system formed over the Chinese continent during dust-storm-induced dust days with a negative AOI. This resulted in both a decrease in the frequency of dust-storm-induced dust days and reduction in wind speeds, facilitating their transport from source regions to Korea. Conversely, on days with positive AOIs, an extensive warm and stagnant high-pressure system dominated mainland China, accompanied by further cooling of the northern segment of the polar jet. A notable decline in wind speed in the lower troposphere across the Mongolia-northern China-Korea region diminished the occurrence of dust storm-induced dust days and also weakened their long-range transport.

An Estimation of Concentration of Asian Dust (PM10) Using WRF-SMOKE-CMAQ (MADRID) During Springtime in the Korean Peninsula (WRF-SMOKE-CMAQ(MADRID)을 이용한 한반도 봄철 황사(PM10)의 농도 추정)

  • Moon, Yun-Seob;Lim, Yun-Kyu;Lee, Kang-Yeol
    • Journal of the Korean earth science society
    • /
    • v.32 no.3
    • /
    • pp.276-293
    • /
    • 2011
  • In this study a modeling system consisting of Weather Research and Forecasting (WRF), Sparse Matrix Operator Kernel Emissions (SMOKE), the Community Multiscale Air Quality (CMAQ) model, and the CMAQ-Model of Aerosol Dynamics, Reaction, Ionization, and Dissolution (MADRID) model has been applied to estimate enhancements of $PM_{10}$ during Asian dust events in Korea. In particular, 5 experimental formulas were applied to the WRF-SMOKE-CMAQ (MADRID) model to estimate Asian dust emissions from source locations for major Asian dust events in China and Mongolia: the US Environmental Protection Agency (EPA) model, the Goddard Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) model, and the Dust Entrainment and Deposition (DEAD) model, as well as formulas by Park and In (2003), and Wang et al. (2000). According to the weather map, backward trajectory and satellite image analyses, Asian dust is generated by a strong downwind associated with the upper trough from a stagnation wave due to development of the upper jet stream, and transport of Asian dust to Korea shows up behind a surface front related to the cut-off low (known as comma type cloud) in satellite images. In the WRF-SMOKE-CMAQ modeling to estimate the PM10 concentration, Wang et al.'s experimental formula was depicted well in the temporal and spatial distribution of Asian dusts, and the GOCART model was low in mean bias errors and root mean square errors. Also, in the vertical profile analysis of Asian dusts using Wang et al's experimental formula, strong Asian dust with a concentration of more than $800\;{\mu}g/m^3$ for the period of March 31 to April 1, 2007 was transported under the boundary layer (about 1 km high), and weak Asian dust with a concentration of less than $400\;{\mu}g/m^3$ for the period of 16-17 March 2009 was transported above the boundary layer (about 1-3 km high). Furthermore, the difference between the CMAQ model and the CMAQ-MADRID model for the period of March 31 to April 1, 2007, in terms of PM10 concentration, was seen to be large in the East Asia area: the CMAQ-MADRID model showed the concentration to be about $25\;{\mu}g/m^3$ higher than the CMAQ model. In addition, the $PM_{10}$ concentration removed by the cloud liquid phase mechanism within the CMAQ-MADRID model was shown in the maximum $15\;{\mu}g/m^3$ in the Eastern Asia area.