• Title/Summary/Keyword: 하천 유량

Search Result 2,180, Processing Time 0.036 seconds

Prediction of Topographic Change in the Estuary of Nakdong River and Analysis of Its Contribution by External Force Condition (낙동강 하구 지형변화 예측 및 외력조건에 따른 기여도 분석)

  • Kim, Kang-Min;Lee, Joong-Woo
    • Journal of Navigation and Port Research
    • /
    • v.43 no.1
    • /
    • pp.64-71
    • /
    • 2019
  • It is very important to understand the mechanism of estuary topographic changes for the study of estuary management and treatment methods. In this study, the effects from the land-side, such as rainfall, river discharge, sediment discharge, and sea side, such as tide, tidal current, wave and surface sediments related to the topographic changes of the Nakdong river estuary were investigated and analyzed. Based on the analyzed data, topographic modeling was performed to analyze the topographic change and contribution of external force conditions. As a result of numerical modeling, the topographic change showed that erosion that predominates in the water directly affected by the discharge of the estuary barrage. The deposition predominates in the indirectly affected tideland. As sediments moved along the water way being sorted and distributed by the wave, the deposition predominated in the front of the barrier island. Compared with the deposition dominance, which is the result of the topographic change prediction, the impact of each external force condition gives larger erosion. However, the combined impact of each external force condition showed deposition dominant. Therefore, the topographic changes of the Nakdong river estuary are considered to be the result of various complex external factors. The impacts of each external force condition show the different contribution to each comparison area. These results should be considered when establishing the estuary management method. It must be understood that this is the result of complex interactions.

Experiment of Artificial Ladder for the Improve of Eel Ladder: II. About Pebble Size and Ladder Angles (뱀장어 전용어도 개선을 위한 인공어도 실험 II. 자갈 입자 및 각도에 대하여)

  • Kim, Jae Goo
    • Korean Journal of Ichthyology
    • /
    • v.34 no.2
    • /
    • pp.127-132
    • /
    • 2022
  • Most of the downstream of the river is blocked by beams, so fishways are required for the movement of conciliatory fish species and connection with the upstream. Therefore, it is very important as an ecological pier that can help free movement of fish. The three previously installed eel ladders use only brushes on the bottom. For find out the effect of the bottom material except to brush, experimented used model glass eel ladders to the ascent of glass eel. The eel ladder model was 1.2 m length, 0.3 m wide, and 0.1 m high, and three gravels of different particles were attached to the bottom of the fish ladder setting on the Geumgang Estuary Bank. The first model ladder was made of gravel with particles of 5 mm, and the second model ladder was made of gravel with particles of 2 mm. The third model ladder was made by solidifying with particles of 1 mm or less cement. All experiments were repeated 5 times for 1 hour. As a result of the experiment, the lower the angle, and the smaller the gravel particles, the more glass eels are ascended to the ladder, but the made of cement was nearly not ascent. The gravel-bottom model ladder has a lower discharge and flow rate than the brush ladder so more glass eels can ascent ladder, and if the glass eel ladder is improved through experiments applying various floor materials and variables in the future, more glass eels are going to ascent glass eel ladder.

A Development of Hydrological Model Calibration Technique Considering Seasonality via Regional Sensitivity Analysis (지역적 민감도 분석을 이용하여 계절성을 고려한 수문 모형 보정 기법 개발)

  • Lee, Ye-Rin;Yu, Jae-Ung;Kim, Kyungtak;Kwon, Hyun-Han
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.3
    • /
    • pp.337-352
    • /
    • 2023
  • In general, Rainfall-Runoff model parameter set is optimized using the entire data to calculate unique parameter set. However, Korea has a large precipitation deviation according to the season, and it is expected to even worsen due to climate change. Therefore, the need for hydrological data considering seasonal characteristics. In this study, we conducted regional sensitivity analysis(RSA) using the conceptual Rainfall-Runoff model, GR4J aimed at the Soyanggang dam basin, and clustered combining the RSA results with hydrometeorological data using Self-Organizing map(SOM). In order to consider the climate characteristics in parameter estimation, the data was divided based on clustering, and a calibration approach of the Rainfall-Runoff model was developed by comparing the objective functions of the Global Optimization method. The performance of calibration was evaluated by statistical techniques. As a result, it was confirmed that the model performance during the Cold period(November~April) with a relatively low flow rate was improved. This is expected to improve the performance and predictability of the hydrological model for areas that have a large precipitation deviation such as Monsoon climate.

The Effective for Non-Point pollution Reduction Facility installation project (비점오염저감시설 설치사업의 효과 평가)

  • Choe, Hye-Seon;Geronimo, Franz Kevin;Jeon, Min-Su;Reyes, Nash Jett;Kim, Lee-Hyeong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.206-206
    • /
    • 2020
  • 토지이용의 고도화에 따라 비점오염원 부하는 증가하는 추세이며 기후변화에 따른 강우강도 증가 등으로 지표면에 축적된 고농도의 비점오염물질이 하천으로 유출, 수질오염을 가중시키고 있어 비점오염원 관리가 필요하다. 환경부에서 효율적인 비점오염원 관리를 위하여 2004년부터 현재까지 3단계에 걸쳐 비점오염원 관리 종합대책을 수행하고 있으며, 2008년부터 비점국고보조사업을 추진하여 비점오염저감시설 설치를 통한 수질개선 및 수생태계 건강성 확보에 기여하고자 하였다. 이에 본 연구는 비점국고보고사업을 통해 구축된 비점오염저감시설을 대상으로 시설 설치 및 운영 현황과 강우시 비점오염저감 효과 분석을 통한 시설의 평가를 수행하고자 한다. 연구대상시설은 시범시설 및 국고보조시설 총 70개소로 2005~2017년에 준공되었으며, 2016년부터 현재까지 총 4년동안 진행된 모니터링을 바탕으로 연구를 수행하였다. 시설의 용량은 34~97,000㎥의 범위로 SA/CA 1.2~6.6%의 범위이다. 강우시 모니터링은 선행무강우일수 3일이상을 고려하여 수행하였으며 도시지역의 경우 5mm 이상, 농촌지역 10mm 이상시 모니터링을 진행하였다. 시설의 유입과 유출부에서 수질 및 유량 모니터링을 진행하였으며, 수질오염공정시험법에 준하여 BOD, COD, SS, T-N 및 T-P 항목에 대해 분석을 수행하였다. 모니터링 결과, 국내 비점오염저감시설의 평균 부하량은 SS 250.4 kg/day, BOD 89.2 kg/day, COD 136.2 kg/day, TN 51.4 kg/day, TP 7.1 kg/day 로 분석되었으며, 유출부 의 경우 SS 83.8 kg/day, BOD 37.2 kg/day, COD 51.0 kg/day, TN 15.4 kg/day, TP 2.0 kg/day로 나타났다. 또한, 은 오염물질 유입 및 유출 부하량의 상관관계 분석결과 SS, BOD, COD의 유입 및 유출 부하량의 상관성은 높게 나타났으며 특히 유기물질(BOD, COD)의 상관성은 0.8이상으로 분석되었다(p<0.005). 이는 비점오염저감시설에 적용된 식생, 미생물, 여재 등을 통하여 물리학적 및 생태학적 처리를 통해 저감되기 때문으로 판단된다. 하지만, TN은 인위적 요인과 자연적 요인이 복합적으로 작용으로 배출 특성으로 상관성은 매우 낮은 것으로 분석되었다.

  • PDF

Substrate Selection and Burying Behaviour of Sand-dwelling Endangered Freshwater Fish, Gobiobotia naktongensis (멸종위기 야생생물I급 흰수마자의 모래 선택과 잠입 행동에 관한 연구)

  • Keun-Sik Kim;Moon-Seong Heo;Jin Kim;Chang-Deuk Park;Ju-Duk Yoon
    • Korean Journal of Ecology and Environment
    • /
    • v.56 no.4
    • /
    • pp.375-383
    • /
    • 2023
  • To determine the cause of the population decline in Gobiobotia naktongensis, substrate preference and burying behaviour were investigated in this study. In general, the species was shown to prefer a substrate size of 1 mm or less, depending on the flow. In addition, the burying depth varied according to the size of the fish and increased with a decrease in water temperature. Our findings showed that the main cause of the population reduction was the physical changes in the substrate structure due to the dams or barrages construction. Notably, the accumulation of silt and mud in the substrate upon the formation of an upstream lentic water region for structural construction and bed armouring caused by scouring and reduced downstream inflow of fine sediment were deterministic in the fish habitat changes, causing problems in burying. As sand substrate structure is critical for the survival and inhabitation of psammophilous species, efficient strategies should be developed with proper habitat management to reduce the anthropogenic damage

The Trend and Assessment of Water Pollution from Midstream to Downstream of the Kum River (금강 중 ${\cdot}$ 하류의 오염 양상과 수질평가)

  • Rim, Chang-Soo;Cho, Kyung-Je;Shin, Jae-Ki
    • Korean Journal of Ecology and Environment
    • /
    • v.33 no.1 s.89
    • /
    • pp.51-60
    • /
    • 2000
  • In order to understand the trend and assessment of water pollution, seasonal water quality was determined in the main river and the tributaries from midstream to downstream of the Kum River from March 1998 to June 1999. Among environmental factors, the variation of nitrogen, phosphorus and chlorophyll-a was distinctive on an aspect of increase and decrease relatively to others, and particularly the impact of inorganic N ${\cdot}$ P inflowing into the main river was observed to be more significant at the Kapchon, Mihochon and Soksongchon among the tributaries. Water quality was highly related to hydrologic factor, and it was more deteriorated when water discharge maintains for a long time below normal flow or relatively at low condition of minimum and drought flow. These phenomena were remarkablee from December to March of the next year. $NH_4$ and SRP were decreased dramatically flowing toward the lower part of the river and chl-a was increased exponentially. While, the variations of $NO_3$ and $BOD_5$ were regular from midstream to downstream and there was no significant difference between the stations. Limiting nutrient for Phytoplankton growth seemed to be P than N because the ratio of TN/TP or DIN/SRP was relatively high as 42 or 544 in the main river, respectively. The main river and tributaries were ranked to be third grade, based on the assessment of BOD as an indirect indicator of organics, but particularly Kapchon was ranked to be over fifth grade. In addition, the inflow of high N ${\cdot}$ P nutrients from tributaries including Kapchon and Mihochon seemed to be major factor of the development of water pollution of the Kum River. On the other hand, persistent bloom of phytoplankton in lower part of the river was observed. As a conclusion, management of water quality for main source of pollution is urgent.

  • PDF

Evaluation of Function of Upland Farming for Preventing Flood and Fostering Water Resources (밭농사의 수자원 함양과 홍수조절 기능에 대한 계량화 평가)

  • Hyun, Byung-Keun;Kim, Moo-Sung;Eom, Ki-Cheol;Kang, Ki-Kyung;Yun, Hong-Bae;Seo, Myung-Cheol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.36 no.3
    • /
    • pp.163-179
    • /
    • 2003
  • Multifunctionality of agriculture which is not traded on the market now has been an important international issue in that it environmental and public benefits. We carried out to modify and to update the function of upland farming on flood prevention and fostering water resources. Economic values of environmental benefits were evaluated by replacement cost methods. Models to evaluate the function of preventing flood were selected as: (1)precipitation(flood-inducing) - runoff(A), (2) soil depth ${\times}$ soil air phase, (3) precipitation (flood-inducing) - runoff(B), (4) soil depth ${\times}$ effective porosity of soil. Models to estimate the function of fostering water resources were (1) saturated hydraulic conductivity (Ks) ${\times}$ duration of saturation(days) ${\times}$ (1-ratio of water flow directly into river), (2) precipitation ${\times}$ ratio of water fostered by rain resources ${\times}$ (area of upland/total land area), and (3) soil water retention quantity(under standing crop or tree) - SWRQ(in bare soil). Function of preventing flood was $883Mg\;ha^{-1}$ of water per year and 645 million Mg for the whole upland area. Function of fostering water resources was $94.1Mg\;ha^{-1}$ of water per year and 69 million Mg for the whole upland area. The value of flood-preventing function evaluated by replacement cost methods was estimated 1,428 billion won per year as compared to the cost for dam construction. The value of water resource fostering were estimated 8.6 billion won in the price of living water.

Evaluation on Functional Assessment for Fish Habitat of Underground type Eco-Artificial Fish Reef using the Index of Biological Integrity (IBI) and Qualitative Habitat Evaluation Index (QHEI) (생물보전지수(IBI) 및 서식지 평가지수(QHEI)를 활용한 지하 매립형 방틀둠벙의 어류 서식처 기능 평가)

  • Ahn, Chang Hyuk;Joo, Jin Chul;Kwon, Jae Hyeong;Song, Ho Myeon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.6B
    • /
    • pp.565-575
    • /
    • 2011
  • The purpose of this study was to quantitatively evaluate the expression of both multi-metric qualitative habitat evaluation index (QHEI) and biological integrity index (IBI) for artificial structures eco-artificial fish reef (EAFR) for fishes asylum and habitat. Especially, both experimental evaluation and biological verification were performed in Water and Environmental Center's outdoor test-bed of Korea Institute of Construction Technology located in Andong-city, Gyeongsangbuk-do. The experimental conditions reflecting the situation of domestic river include the flow rate (e.g., $0.0{\sim}1.5m\;s^{-1}$), the width (e.g., 1.0~3.0 m), the depth (e.g., 0.05~0.70 m), and variable bed materials. Both QHEI and IBI were monitored for 8 months from May to December 2010. Whereas QHEI values were highest at experimental points of the E~F with an average of 83.1, those were lowest at B~C with an average of 78.1. However, QHEI values inside EAFR were more than 98.9, regardelss of space and time, and indicated more than the highest good of the state (Good) in the habitat. Overally, IBI values showed similar trend with QHEI, but were 44.2 in the winter dry season, compared to 32.8 of QHEI values. IBI values Also, IBI values inside EAFR were greater than those at the experimental channel by 5.7 to 11.4% and 18.7 to 34.8% in flow and stagnant conditions, respectively, indicating that EAFR can secure asylum and habitat for fish during the dry season. For comprehensive aquatic ecosystem assessment, the experimental channel showed generally fair conditions (Fair~Good), whereas EAFR showed good conditions (Good), suggesting that EAFR can be applied to aquatic ecosystem restoration and improvement.

Evaluation of Water Quality Characteristics on Tributaries of Dongjin River Watershed (동진강 유역내 하천의 특성별 영향평가)

  • Yun, Sun-Gang;Kim, Won-Il;Kim, Jin-Ho;Kim, Seon-Jong;Koh, Mun-Hwan;Eom, Ki-Cheol
    • Korean Journal of Environmental Agriculture
    • /
    • v.21 no.4
    • /
    • pp.243-247
    • /
    • 2002
  • Irrigation water quality along Donjin river watershed was monitored to find a possible pollutant, for maintaining water quality to achieve food safety through water quality preservation of river. As a pollution indicators, such as Biological Oxygen Demand(BOD), Chemical Oxygen Demand(COD), Total Nitrogen(T-N), and Total Phosphate(T-P) in Dongjin river were examined from May to November in 2001. The results were as follows : The BOD level of Dongjin river ranged from 2.84 to 6.45 mg/L, which would be in a II$\sim$IV grade of the potable water criteria by Ministry of Environment. Averaged BOD level of downstream DJ6(After Jeongupcheon confluence) was 4.07 mg/L. The average COD level of Dongjin river ranged from 11.20 to 32.96 mg/L. COD level of DJ6 rapidly increased rapidly after the junction of Dongjin river and Jungupcheon because it showed the latter had relatively high pollution level. T-N content were significantly high in all sites of Dongjin river ranged through 4.16 to 5.84 mg/L. T-P examined high concentration than another thing point by 0.19 mg/L after Jeongupcheon confluence as BOD and COD. COD of main stream was expressed high concentration to dry season after rainy season. In case of T-P, pollution degree of dry season before rainy season appeared and examined that quality of water was worsened go by dry season after rainy season. The water quality of Dongjin river was deteriorated with inflow of Jungupcheon polluted by municipal and industrial sites near Jungup city.

Purification Efficiency of Slop & Plane Water Treatment Part of SRT System Using Eco-Concrete (Eco-Concrete를 이용한 SRT System의 사면수처리부와 평면수처리부의 정화효율분석)

  • Jang, Won-Geun;Park, Jae-Young;Choi, I-Song;Chang, Jun-Young;Oh, Jong-Min
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1860-1864
    • /
    • 2006
  • 본 연구는 강우시 발생되는 강우유출수와 합류식하수관거월류수에 의해 하천으로 유입되는 오염부하를 저감시키기 위한 공법으로, 고수부지 및 제방사면부와 둔치부를 형상화하여 pilot를 제작하였고, 연속적으로 시운전을 한 SRTS(Stormwater Runoff Treatment System)에 관한 것이다. SRT system 내부의 사면수처리부와 평면수처리부에는 다공성 콘크리트를 충진하였다. system 상부에는 식생을 조성하여 뿌리가 수면에 닿아 영양물질을 흡수하는 목적으로 사면수처리부와 평면수처리부에 각각 정육각형과 직사각형인 식생포트를 탈.부착이 가능하도록 고안하였다. 내부에서는 토양과 수처리조 사이에 연결관을 부착하였고, 모세관현상에 의해 토양이 수분을 흡수하도록 구성하였다. pilot plant는 유입부, 사면 수처리부, 평면 수처리부, 유출부로 나누었다. 유입부는 유입펌프와 V-notch로 구성하였고, 유입펌프는 2대를 설치하여 1시간 간격으로 연속적 유입으로 유량조절이 가능하도록 상호교대 운전을 하였다. 평면 수처리부$(W(1.0m){\times}(L(2.4m){\times}H(0.6m))$는 장방형의 접촉산화조로서 하부에 슬러지 침전 및 저류를 위한 hopper를 설치하여 슬러지의 원활한 수집 및 인발이 가능하도록 하였다. 유출부는 사각weir를 설치하였다. 강우유출수의 pH는 $7.27{\sim}7.92$이고, DO농도는 $7.12{\sim}7.88mg/l$로 관측되었다. 2차처리수의 pH는 평균7.4이고 DO농도는 최저 4.5 mg/l에서 최고 8.9 mg/l로 평균 6.8 mg/l로 관측되었다. 또한 강우유출수의 유입수의 T-N, T-P 농도는 각각 $17.5{\sim}22.5mg/l,\;8.9{\sim}11.4mg/l$의 범위이고, 2차 처리수의 유입수의 T-N, T-P 농도와 유사하였다.적인 방법론을 제시할 수 있을 것으로 사료된다.첨두홍수량을 저류하기 위해서 상대적으로 넓은 저류면적이 필요한 것으로 나타난다. 대등한 수위감소값의 홍수저감효과를 발휘하기 위해서 본 연구에서는 On-Line 저류지 면적은 Off-Line 저류지에 비 두배 이상이 필요한 것으로 보여졌다.들에 관한 정보는 종종 현장관측에서 조차 무시되는 경우가 많다. 이에 본 연구에서는 수질모형의 매개변수 중 특히 수리특성에 관련된 매개변수들이 수질에 미치는 영향을 파악하는 것을 목적으로 하고 있다. 이를 위해 적용된 수질모형은 QualKo를 사용하였으며, 대상 하천은 낙동강 본류 경남구간 시점 부근인 회천 합류 전부터 낙동강 본류 경남구간 종점 부근인 밀양강 합류 전까지의 경남 오염총량관리 기본계획 시 구축된 모형 매개변수를 바탕으로 분석을 수행하였다. 일차오차분석을 이용하여 수리매개변수와 수질매개변수의 수질항목별 상대적 기여도를 파악해 본 결과, 수리매개변수는 DO, BOD, 유기질소, 유기인 모든 항목에 일정 정도의 상대적 기여도를 가지고 있는 것을 알 수 있었다. 이로부터 수질 모형의 적용 시 수리 매개변수 또한 수질 매개변수의 추정 시와 같이 보다 세심한 주의를 기울여 추정할 필요가 있을 것으로 판단된다.변화와 기흉 발생과의 인과관계를 확인하고 좀 더 구체화하기 위한 연구가 필요할 것이다.게 이루어질 수 있을 것으로 기대된다.는 초과수익률이 상승하지만, 이후로는 감소하므로, 반전거래전략을 활용하는 경우 주식투자기간은 24개월이하의 중단기가 적합함을 발견하였다. 이상의 행태적 측면과 투자성과측면의 실증결과를 통하여 한국주식시장에 있어서 시장수익률을 평균적으로 초과할 수 있는 거래전략은 존재하므로 이러한 전략을 개발 및 활용할 수 있으며, 특히, 한국주식시장에 적합한 거래전략은 반전거래전략이고, 이 전략의 유용성은 투자자가 설정한 투자기간보다 더욱 긴 분석기간의 주식가격정보에 의하여 최대한 발휘될 수 있음을 확인하

  • PDF