• Title/Summary/Keyword: 하천특성

Search Result 3,681, Processing Time 0.027 seconds

Applicability Analysis of the HSPF Model for the Management of Total Pollution Load Control at Tributaries (지류총량관리를 위한 HSPF 모형의 적용성 분석)

  • Song, Chul Min;Kim, Jung Soo;Lee, Min Sung;Kim, Seo Jun;Shin, Hyung Seob
    • Ecology and Resilient Infrastructure
    • /
    • v.9 no.1
    • /
    • pp.1-14
    • /
    • 2022
  • The total maximum daily load (TMDL) implemented in Korea mainly manages the mainstream considering a single common pollutant and river discharge, and the river system is divided into unit watersheds. Changes in the water quality of managed rivers owing to the water quality management in tributaries and unit watersheds are not considered when implementing the TMDL. In addition, it is difficult to consider the difference in the load of pollutants generated in the tributary depending on the conditions of the water quality change in each unit watershed, even if the target water quality was maintained in the managed water system. Therefore, it is necessary to introduce the total maximum load management at tributaries to manage the pollution load of tributaries with a high degree of pollution. In this study, the HSPF model, a watershed runoff model, was applied to the target areas consisting of 53 sub-watersheds to analyze the effect of water quality changes the in tributaries on the mainstream. Sub-watersheds were selected from the three major areas of the Paldang water system, including the drainage basins of the downstream of the South Han-River, Gyeongan stream, and North Han-River. As a result, BOD ranged from 0.17 mg/L to 4.30 mg/L, and was generally high in tributaries and decreased in the downstream watershed. TP ranged from 0.02 mg/L - 0.22 mg/L, and the watersheds that had a large impact on urbanization and livestock industry were high, and the North Han-River basin was generally low. In addition, a pollution source reduction scenario was selected to analyze the change in water quality by the amount of pollution load discharged at each unit watershed. The reduction rate of BOD and TP according to the scenario changes was simulated higher in the watershed of the downstream of the North Han-River and downstream and midstream of the Gyeongan stream. It was found that the benefits of water quality reduction from each sub-watershed efforts to improve water quality are greatest in the middle and downstream of each main stream, and it is judged that it can be served as basic data for the management of total tributaries.

Microcystins Concentration in Fishes Collected from the Weirs of Four Rivers in Korea and Risk Assessment (국내 4대강 보에서 채집된 어류 조직에서 microcystins 농도 분석 및 위해도 평가)

  • Do-Hwan Kim;Yuna Shin;Min Jeong Park;Young-Cheol Cho
    • Korean Journal of Ecology and Environment
    • /
    • v.55 no.2
    • /
    • pp.120-131
    • /
    • 2022
  • Microcystins (MCs) are cyano-toxins mainly produced by cyanobacteria in the genera of Microcystis, Anabaena, and Oscillatoria. The concentrations of MCs in the water bodies and fish tissues taken from the four weirs (Ipo, Gangjeong-goryeong, Baekje, and Juksan) in the four main rivers in Korea, and the health risk of human due to consumption of toxin-detected fish was examined. The maximum values of MCs concentration in the water samples were as follows: Juksan (3.261 ㎍ L-1), Gangjeong-goryeong (1.014 ㎍ L-1), Baekje (0.759 ㎍ L-1), and Ipo (0.266 ㎍ L-1) weirs. The MC-RR concentration was the highest among the MCs, and MC-YR was not detected. MCs of 0.222~9.808 ㎍ g-1 dry weight were detected in the liver of 3 out of 215 fishes of 16 species, and below the detection limit in muscle. As a result of comparing the feeding characteristics of the collected fishes and toxin concentrations in water and fish tissue, it was concluded that the biomagnification of MCs through the food chain did not occur. It was judged that there was no health risk due to the consumption of the fish detected the toxin, based on the amount of the fish intake of the Korean people and the allowable daily intake of MCs. However, in order to reduce the health risk due to MCs, further studies should be conducted to analyze the concentration of MCs contained in fish tissues collected at various times in the area dominated by harmful cyanobacteria to obtain data on the exposure of MCs due to fish consumption. In addition, it is necessary to establish the management guidelines for MCs in fish tissues.

Origin and Source Appointment of Sedimentary Organic Matter in Marine Fish Cage Farms Using Carbon and Nitrogen Stable Isotopes (탄소 및 질소 안정동위원소를 활용한 어류 가두리 양식장 내 퇴적 유기물의 기원 및 기여도 평가)

  • Young-Shin Go;Dae-In Lee;Chung Sook Kim;Bo-Ram Sim;Hyung Chul Kim;Won-Chan Lee;Dong-Hun Lee
    • Korean Journal of Ecology and Environment
    • /
    • v.55 no.2
    • /
    • pp.99-110
    • /
    • 2022
  • We investigated physicochemical properties and isotopic compositions of organic matter (δ13CTOC and δ 15NTN) in the old fish farming (OFF) site after the cessation of aquaculture farming. Based on this approach, our objective is to determine the organic matter origin and their relative contributions preserved at sediments of fish farming. Temporal and spatial distribution of particulate and sinking organic matter(OFF sites: 2.0 to 3.3 mg L-1 for particulate matter concentration, 18.8 to 246.6 g m-2 day-1 for sinking organic matter rate, control sites: 2.0 to 3.5 mg L-1 for particulate matter concentration, 25.5 to 129.4 g m-2 day-1 for sinking organic matter rate) between both sites showed significant difference along seasonal precipitations. In contrast to variations of δ13CTOC and δ15NTN values at water columns, these isotopic compositions (OFF sites: -21.5‰ to -20.4‰ for δ13 CTOC, 6.0‰ to 7.6‰ for δ15NTN, control sites: -21.6‰ to -21.0‰ for δ13CTOC, 6.6‰ to 8.0‰ for δ15NTN) investigated at sediments have distinctive isotopic patterns(p<0.05) for seawater-derived nitrogen sources, indicating the increased input of aquaculture-derived sources (e.g., fish fecal). With respect to past fish farming activities, representative sources(e.g., fish fecal and algae) between both sites showed significant difference (p<0.05), confirming predominant contribution (55.9±4.6%) of fish fecal within OFF sites. Thus, our results may determine specific controlling factor for sustainable use of fish farming sites by estimating the discriminative contributions of organic matter between both sites.

Study of Spatiotemporal Variations and Origin of Nitrogen Content in Gyeongan Stream ( 경안천 내 질소 함량의 시공간적 변화와 기원 연구)

  • Jonghoon Park;Sinyoung Kim;Soomin Seo;Hyun A Lee;Nam C. Woo
    • Economic and Environmental Geology
    • /
    • v.56 no.2
    • /
    • pp.139-153
    • /
    • 2023
  • This study aimed to understand the spatiotemporal variations in nitrogen content in the Gyeongan stream along the main stream and at the discharge points of the sub-basins, and to identify the origin of the nitrogen. Field surveys and laboratory analyses, including chemical compositions and isotope ratios of nitrate and boron, were performed from November 2021 to November 2022. Based on the flow duration curve (FDC) derived for the Gyeongan stream, the dry season (mid-December 2021 to mid-June 2022) and wet season (mid-June to early November 2022) were established. In the dry season, most samples had the highest total nitrogen(T-N) concentrations, specifically in January and February, and the concentrations continued to decrease until May and June. However, after the flood season from July to September, the uppermost subbasin points (Group 1: MS-0, OS-0, GS-0) where T-N concentrations continually decreased were separated from the main stream and lower sub-basin points (Group 2: MS-1~8, OS-1, GS-1) where concentrations increased. Along the main stream, the T-N concentration showed an increasing trend from the upper to the lower reaches. However, it was affected by those of the Osan-cheon and Gonjiamcheon, the tributaries that flow into the main stream, resulting in respective increases or decreases in T-N concentration in the main stream. The nitrate and boron isotope ratios indicated that the nitrogen in all samples originated from manure. Mechanisms for nitrogen inflow from manure-related sources to the stream were suggested, including (1) manure from livestock wastes and rainfall runoff, (2) inflow through the discharge of wastewater treatment plants, and (3) inflow through the groundwater discharge (baseflow) of accumulated nitrogen during agricultural activities. Ultimately, water quality management of the Gyeongan stream basin requires pollution source management at the sub-basin level, including its tributaries, from a regional context. To manage the pollution load effectively, it is necessary to separate the hydrological components of the stream discharge and establish a monitoring system to track the flow and water quality of each component.

Fossil Saline Groundwater and Their Flushing Out At Gilsan Stream Catchment in the Western Coastal Area of Seocheon, Korea (서천 해안지역 길산천 소유역에서의 고염분 지하수와 씻김 현상)

  • Sang-Ho Moon;Yoon Yeol Yoon;Jin-Yong Lee
    • Economic and Environmental Geology
    • /
    • v.55 no.6
    • /
    • pp.671-687
    • /
    • 2022
  • It has been reported that about 47% of groundwater wells within 10 km from the coastline in the western/southern coastal areas of Korea were affected by seawater. It has been interpreted that the cause of groundwater salinization is seawater intrusion. The Gilsan stream in the Seocheon area was a tidal stream until the Geumgang estuary dam was constructed and operated. Therefore, it is likely that the Gilsan stream catchment was deposited with sediments containing high-saline formation water prior to the use of landfill farmland at this catchment area. The groundwater in this study area showed EC values ranging from 111 to 21,000 µS/cm, and the water quality types were diverse including Ca(or Na)-HCO3, Ca(or Na)-HCO3(Cl), Na-Cl(HCO3), Na-Cl types. It is believed that this diversity of water quality is due to the mixing of seawater and fresh groundwater generated by infiltration of precipitation and surface water through soil and weathered part. In this study, we discussed whether this water quality diversity and the presence of saline groundwater are due to present seawater intrusion or to remnant high-saline pore water in sediments during flushing out process. For this, rain water, surface water, seawater, and groundwater were compared regarding the water quality characteristics, tritium content, oxygen/hydrogen stable isotopic composition, and 87Sr/86Sr ratio. The oxygen/hydrogen stable isotopic compositions indicated that water composition of saline groundwaters with large EC values are composed of a mixture of those of fresh groundwater and surface water. Also, the young groundwater estimated by tritium content has generally higher NO3 content. All these characteristics showed that fresh groundwater and surface water have continued to affect the high-saline groundwater quality in the study area. In addition, considering the deviation pattern in the diagrams of Na/Cl ratio versus Cl content and SAR (sodium adsorption ratio) versus Cl content, in which two end members of fresh surface-ground water and seawater are assumed, it is interpreted that the groundwater in the study area is not experiencing present seawater intrusion, but flush out and retreating from ancient saline formation water.

Development of disaster severity classification model using machine learning technique (머신러닝 기법을 이용한 재해강도 분류모형 개발)

  • Lee, Seungmin;Baek, Seonuk;Lee, Junhak;Kim, Kyungtak;Kim, Soojun;Kim, Hung Soo
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.4
    • /
    • pp.261-272
    • /
    • 2023
  • In recent years, natural disasters such as heavy rainfall and typhoons have occurred more frequently, and their severity has increased due to climate change. The Korea Meteorological Administration (KMA) currently uses the same criteria for all regions in Korea for watch and warning based on the maximum cumulative rainfall with durations of 3-hour and 12-hour to reduce damage. However, KMA's criteria do not consider the regional characteristics of damages caused by heavy rainfall and typhoon events. In this regard, it is necessary to develop new criteria considering regional characteristics of damage and cumulative rainfalls in durations, establishing four stages: blue, yellow, orange, and red. A classification model, called DSCM (Disaster Severity Classification Model), for the four-stage disaster severity was developed using four machine learning models (Decision Tree, Support Vector Machine, Random Forest, and XGBoost). This study applied DSCM to local governments of Seoul, Incheon, and Gyeonggi Province province. To develop DSCM, we used data on rainfall, cumulative rainfall, maximum rainfalls for durations of 3-hour and 12-hour, and antecedent rainfall as independent variables, and a 4-class damage scale for heavy rain damage and typhoon damage for each local government as dependent variables. As a result, the Decision Tree model had the highest accuracy with an F1-Score of 0.56. We believe that this developed DSCM can help identify disaster risk at each stage and contribute to reducing damage through efficient disaster management for local governments based on specific events.

Benthic Macroinvertebrates Inhabiting Estuaries in Sea Area and Relationship with Major Drivers of Change in Estuaries (해역별 하구에 서식하는 저서성 대형무척추동물 현황과 하구 서식지 주요 변화 동인과의 관계)

  • Lim, Sung-Ho;Jung, Hyun-Chul;Lee, Min-Hyuk;Lee, Sang-Wook;Moon, Jeong-Suk;Kwon, Soon-Hyun;Won, Du-Hee
    • Korean Journal of Ecology and Environment
    • /
    • v.55 no.1
    • /
    • pp.10-18
    • /
    • 2022
  • This study analyzed the relationship between the community structure of benthic macroinvertebrates and habitat changes in open estuaries among the sites included in the national estuary monitoring program. The estuary survey was conducted under the "Guidelines for Investigation and Evaluation of Biometric Networks" and classified by sea area, 80 places in the East Sea, 102 places in the South Sea, and 19 places in the West Sea were investigated. In a total of 201 open estuaries, benthic macroinvertebrates were identified with 4 phyla, 9 classes, 41 orders, 139 families, 269 species and 196 species in the East Sea, 182 species in the South Sea, and 90 species in the West Sea. The highest population densities were Insecta in the East Sea, the Malacostraca in the South Sea, and the Annelida in the West Sea. Through SIMPER analysis, species contributing to the similarity of benthic macroinvertebrates communities in each sea area were identified. Some species greatly influenced the similarity of clusters. The benthic community in the East Sea was affected by the salinity, so the contribution rate of freshwater species was high. On the other hand, the benthic communities of the South and West Seas showed species compositions are influenced by the substrate composition. As results, the benthic macroinvertebrate community in Korean estuaries was impacted by salinity and substrate simultaneously, and the close relationship with geographical distance was not observed. The result of this study is expected to be used to respond to environmental changes by identifying and predicting changes in the diversity and distribution of benthic macroinvertebrates in Korea estuaries.

Comprehensive Review on the Implications of Extreme Weather Characteristics to Stormwater Nature-based Solutions (자연기반해법을 적용한 그린인프라 시설의 극한기후 영향 사례분석)

  • Miguel Enrico L. Robles;Franz Kevin F. Geronimo;Chiny C. Vispo;Haque Md Tashdedul;Minsu Jeon;Lee-Hyung Kim
    • Journal of Wetlands Research
    • /
    • v.25 no.4
    • /
    • pp.353-365
    • /
    • 2023
  • The effects of climate change on green infrastructure and environmental media remain uncertain and context-specific despite numerous climate projections globally. In this study, the extreme weather conditions in seven major cities in South Korea were characterized through statistical analysis of 20-year daily meteorological data extracted fro m the Korea Meteorological Administration (KMA). Additionally, the impacts of extreme weather on Nature-based Solutions (NbS) were determined through a comprehensive review. The results of the statistical analysis and comprehensive review revealed the studied cities are potentially vulnerable to varying extreme weather conditions, depending on geographic location, surface imperviousness, and local weather patterns. Temperature extremes were seen as potential threats to the resilience of NbS in Seoul, as both the highest maximum and lowest minimum temperatures were observed in the mentioned city. Moreover, extreme values for precipitation and maximum wind speed were observed in cities from the southern part of South Korea, particularly Busan, Ulsan, and Jeju. It was also found that extremely low temperatures induce the most impact on the resilience of NbS and environmental media. Extremely cold conditions were identified to reduce the pollutant removal efficiency of biochar, sand, gravel, and woodchip, as well as the nutrient uptake capabilities of constructed wetlands (CWs). In response to the negative impacts of extreme weather on the effectiveness of NbS, several adaptation strategies, such as the addition of shading and insulation systems, were also identified in this study. The results of this study are seen as beneficial to improving the resilience of NbS in South Korea and other locations with similar climate characteristics.

Application of Remote Sensing Techniques to Survey and Estimate the Standing-Stock of Floating Debris in the Upper Daecheong Lake (원격탐사 기법 적용을 통한 대청호 상류 유입 부유쓰레기 조사 및 현존량 추정 연구)

  • Youngmin Kim;Seon Woong Jang ;Heung-Min Kim;Tak-Young Kim;Suho Bak
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_1
    • /
    • pp.589-597
    • /
    • 2023
  • Floating debris in large quantities from land during heavy rainfall has adverse social, economic, and environmental impacts, but the monitoring system for the concentration area and amount is insufficient. In this study, we proposed an efficient monitoring method for floating debris entering the river during heavy rainfall in Daecheong Lake, the largest water supply source in the central region, and applied remote sensing techniques to estimate the standing-stock of floating debris. To investigate the status of floating debris in the upper of Daecheong Lake, we used a tracking buoy equipped with a low-orbit satellite communication terminal to identify the movement route and behavior characteristics, and used a drone to estimate the potential concentration area and standing-stock of floating debris. The location tracking buoys moved rapidly during the period when the cumulative rainfall for 3 days increased by more than 200 to 300 mm. In the case of Hotan Bridge, which showed the longest distance, it moved about 72.8 km for one day, and the maximum moving speed at this time was 5.71 km/h. As a result of calculating the standing-stock of floating debris using a drone after heavy rainfall, it was found to be 658.8 to 9,165.4 tons, with the largest amount occurring in the Seokhori area. In this study, we were able to identify the main concentrations of floating debris by using location-tracking buoys and drones. It is believed that remote sensing-based monitoring methods, which are more mobile and quicker than traditional monitoring methods, can contribute to reducing the cost of collecting and processing large amounts of floating debris that flows in during heavy rain periods in the future.

Distribution of the Seagrass in the Nakdong River Estuary (낙동강하구의 잘피(seagrass) 분포 현황)

  • Jung-Im Park;Hee Sun Park;Jongil Bai;Gu-Yeon Kim
    • Korean Journal of Ecology and Environment
    • /
    • v.56 no.3
    • /
    • pp.207-217
    • /
    • 2023
  • This study was conducted to investigate the current status of seagrass species in the Nakdong River estuary from May to June 2023. To survey the seagrass habitat area, the Nakdong River estuary was divided into seven zones. Aerial photography using drones was conducted to find seagrass areas, GPS tracking was carried out on foot in the intertidal zone and by boat and SCUBA diving in the subtidal zone. To analyze the seagrass status, we measured the morphological characteristics, shoot density, and biomass of representative seagrass species in each zone. Four seagrass species were found in this area: Zostera japonica, Z. marina, Ruppia maritima, and Phyllospadix japonicus. The distribution areas of each species was 338.2 ha, 92.9 ha, 0.9 ha, and 1.4 ha, respectively, with a total area of 432.5 ha. Z. japonica was widely distributed in most of the tidal flats and mudflats of the Nakdong River estuary, while Z. marina was restricted to Nulcha-do, Jinu-do, and Dadae-dong. R. maritima occurred within the habitat of Z. japonica in Eulsukdo and Myeongji mudflats, and P. japonicus inhabited rocky areas in Dadae-dong. The shoot density of each species was 4,575.8±338.3 shoots m-2, 244.8±12.0 shoots m-2, 11,302.1±290.0 shoots m-2, and 2862.5±153.5 shoots m-2, respectively. The biomass of each species was 239.7±18.5 gDW m-2, 362.3±20.5 gDW m-2, 33.3±1.2 gDW m-2, and 1,290.0±37.0 gDW m-2, respectively. The results of this study revealed that Z. japonica was dominant in the Nakdong River estuary. In particular, Z. japonica habitats of Eulsukdo, Daema-deung, and Myeongji mudflats were identified as the largest in Korea. The Nakdong River estuary is an important site of ecological, environmental, and economic value, and will require continuous investigation and management of the native seagrasses.