DOI QR코드

DOI QR Code

Benthic Macroinvertebrates Inhabiting Estuaries in Sea Area and Relationship with Major Drivers of Change in Estuaries

해역별 하구에 서식하는 저서성 대형무척추동물 현황과 하구 서식지 주요 변화 동인과의 관계

  • Lim, Sung-Ho (Doohee Institute of Ecological Research, Korea Ecosystem Service Inc.) ;
  • Jung, Hyun-Chul (Doohee Institute of Ecological Research, Korea Ecosystem Service Inc.) ;
  • Lee, Min-Hyuk (Doohee Institute of Ecological Research, Korea Ecosystem Service Inc.) ;
  • Lee, Sang-Wook (Doohee Institute of Ecological Research, Korea Ecosystem Service Inc.) ;
  • Moon, Jeong-Suk (Water Environmental Engineering Research Division, National Institute of Environmental Research) ;
  • Kwon, Soon-Hyun (Water Environmental Engineering Research Division, National Institute of Environmental Research) ;
  • Won, Du-Hee (Doohee Institute of Ecological Research, Korea Ecosystem Service Inc.)
  • 임성호 ((주)생태조사단 부설 두희생태연구소) ;
  • 정현철 ((주)생태조사단 부설 두희생태연구소) ;
  • 이민혁 ((주)생태조사단 부설 두희생태연구소) ;
  • 이상욱 ((주)생태조사단 부설 두희생태연구소) ;
  • 문정숙 (국립환경과학원 물환경공학연구과) ;
  • 권순현 (국립환경과학원 물환경공학연구과) ;
  • 원두희 ((주)생태조사단 부설 두희생태연구소)
  • Received : 2022.03.10
  • Accepted : 2022.03.18
  • Published : 2022.03.31

Abstract

This study analyzed the relationship between the community structure of benthic macroinvertebrates and habitat changes in open estuaries among the sites included in the national estuary monitoring program. The estuary survey was conducted under the "Guidelines for Investigation and Evaluation of Biometric Networks" and classified by sea area, 80 places in the East Sea, 102 places in the South Sea, and 19 places in the West Sea were investigated. In a total of 201 open estuaries, benthic macroinvertebrates were identified with 4 phyla, 9 classes, 41 orders, 139 families, 269 species and 196 species in the East Sea, 182 species in the South Sea, and 90 species in the West Sea. The highest population densities were Insecta in the East Sea, the Malacostraca in the South Sea, and the Annelida in the West Sea. Through SIMPER analysis, species contributing to the similarity of benthic macroinvertebrates communities in each sea area were identified. Some species greatly influenced the similarity of clusters. The benthic community in the East Sea was affected by the salinity, so the contribution rate of freshwater species was high. On the other hand, the benthic communities of the South and West Seas showed species compositions are influenced by the substrate composition. As results, the benthic macroinvertebrate community in Korean estuaries was impacted by salinity and substrate simultaneously, and the close relationship with geographical distance was not observed. The result of this study is expected to be used to respond to environmental changes by identifying and predicting changes in the diversity and distribution of benthic macroinvertebrates in Korea estuaries.

본 연구는 전국 하구 중 열린 하구를 대상으로 저서성대형무척추동물의 군집현황 및 서식지 주요 변화 동인과의 관계를 분석하였다. 조사하구는 "생물측정망 조사 및 평가 지침"에 따라 이루어졌으며, 해역별로 구분하여 동해하구 80곳, 남해하구 102곳, 서해하구 19곳에서 수행하였다. 총 201개 열린 하구에서 출현한 저서성 대형무척추동물은 4문 9강 41목 139과 269종으로 동해하구 196종, 남해하구 182종 서해하구 90종이었다. 동해해역에서는 곤충강이 높은 개체밀도를 보였으며, 남해는 연갑강, 서해는 환형동물문이 가장 높은 개체밀도를 보였다. SIMPER 분석을 통해서 저서성 대형무척추동물 군집에 기여하는 종을 분석한 결과, 해역별로 주요 기여종의 차이가 구분됨을 확인하였으며, 이 상위 종들의 전체 기여도가 군집의 50% 이상을 차지하였다. 동해의 군집은 하구말단 염도의 영향을 받아 담수종의 기여율이 높았으며, 남해, 서해의 경우 하상 기질 비율에 따른 종 조성을 보였다. 각 해역의 군집은 낮은 유사도를 보였는데, 해역별 종 조성의 유사성은 지역의 차이보다 각 하구의 하상 기질 비율에 따른 군집 조성차이를 보였다. 결과적으로 저서성 대형무척추동물 군집은 지리적 거리보다는 염도와 하상 기질 같은 서식환경의 특성에 따라 종 조성이 구분되는 것을 확인하였다. 이러한 내용은 국내 하구의 저서성 대형무척추동물의 다양성과 분포의 변화를 파악하고 예측해 미래환경변화에 대응할 수 있을 것으로 생각된다

Keywords

Acknowledgement

본 논문은 환경부의 재원으로 국립환경과학원의 지원을 받아 수행하였습니다(NIER-2020-04-02-009).

References

  1. Allen, C.R. 2006. Discontinuities in ecological data. Proceedings of the National Academy of Sciences 103(16): 6083-6084. https://doi.org/10.1073/pnas.0601668103
  2. Allen, G.P., J.C. Salomon, P. Bassoullet, Y. Du Penhoat and C. De Grandpre. 1980. Effects of tides on mixing and suspended sediment transport in macrotidal estuaries. Sedimentary Geology 26(1-3): 69-90. https://doi.org/10.1016/0037-0738(80)90006-8
  3. Angeler, D.G., C.R. Allen, C. Barichievy, T. Eason, A.S. Garmestani, N.A. Graham, D. Granholm, L.H. Gunderson, M. Knutson, K.L. Nash and R.J. Nelson. 2016. Management applications of discontinuity theory. Journal of Applied Ecology 53(3): 688-698. https://doi.org/10.1111/1365-2664.12494
  4. Angradi, T.R. 1999. Fine sediment and macroinvertebrate assemblages in Appalachian streams: a field experiment with biomonitoring applications. Journal of the North American Benthological Society 18(1): 49-66. https://doi.org/10.2307/1468008
  5. Attrill, M.J. 2002. A testable linear model for diversity trends in estuaries. Journal of Animal Ecology 71(2): 262-269. https://doi.org/10.1046/j.1365-2656.2002.00593.x
  6. Brown, L.A., J.N. Furlong, K.M. Brown and M.K. La Peyre. 2014. Oyster reef restoration in the northern Gulf of Mexico: effect of artificial substrate and age on nekton and benthic macroinvertebrate assemblage use. Restoration Ecology 22(2): 214-222. https://doi.org/10.1111/rec.12071
  7. Buss, D.F., D.F. Baptista, J.L. Nessimian and M. Egler. 2004. Substrate specificity, environmental degradation and disturbance structuring macroinvertebrate assemblages in neotropical streams. Hydrobiologia 518(1): 179-188. https://doi.org/10.1023/B:HYDR.0000025067.66126.1c
  8. Costa, A.B.H.P., A.P.M.C. Valenca and P.J.P. Dos Santos. 2016. Is meiofauna community structure in Artificial Substrate Units a good tool to assess anthropogenic impact in estuaries. Marine Pollution Bulletin 110(1): 354-361. https://doi.org/10.1016/j.marpolbul.2016.06.041
  9. Cummins, K.W. 1962. An evaluation of some techniques for the collection and analysis of benthic samples with special emphasis on lotic water. The American Midland Naturalist 67(2): 477-504. https://doi.org/10.2307/2422722
  10. Engle, V.D. and J.K. Summers. 2000. Biogeography of benthic macroinvertebrates in estuaries along the Gulf of Mexico and western Atlantic coasts1, 2. Hydrobiologia 436(1): 17-33. https://doi.org/10.1023/A:1026572601578
  11. Faith, D.P., P.R. Minchin and L. Belbin. 1987. Compositional dissimilarity as a robust measure of ecological distance. Vegetatio 69(1): 57-68. https://doi.org/10.1007/BF00038687
  12. Field, J.G., K.R. Clarke and M. Warwick. 1982. A practical strategy for analyzing multi-species distribution patterns. Marin Ecology Progress Series 8: 37-53. https://doi.org/10.3354/meps008037
  13. Galvan, C., A. Puente, S. Castanedo and J.A. Juanes. 2016. Average vs. extreme salinity conditions: Do they equally affect the distribution of macroinvertebrates in estuarine environments. Limnology and Oceanography 61(3): 984-1000. https://doi.org/10.1002/lno.10267
  14. Geyer, W.R. and P. MacCready. 2014. The estuarine circulation. Annual Review of Fluid Mechanics 46: 175-197. https://doi.org/10.1146/annurev-fluid-010313-141302
  15. Gorman, O.T. 1988. The dynamics of habitat use in a guild of Ozark minnows. Ecological Monographs 58(1): 1-18. https://doi.org/10.2307/1942631
  16. Jenkins, G.P., S.D. Conron and A.K. Morison. 2010. Highly variable recruitment in an estuarine fish is determined by salinity stratification and freshwater flow: implications of a changing climate. Marine Ecology Progress Series 417: 249-261. https://doi.org/10.3354/meps08806
  17. Kaller, M.D. and K.J. Hartman. 2004. Evidence of a threshold level of fine sediment accumulation for altering benthic macroinvertebrate communities. Hydrobiologia 518(1-3): 95-104. https://doi.org/10.1023/B:HYDR.0000025059.82197.35
  18. Kennish, M.J. 2002. Environmental threats and environmental future of estuaries. Environmental Conservation 29(1): 78-107. https://doi.org/10.1017/S0376892902000061
  19. Kim, Y.B. and K. Kim. 2015. Institutional definition instances and necessity of establishment about the geographical scope of the East Sea. Journal of Fisheries and Marine Sciences Education 27(5): 1380-1394. https://doi.org/10.13000/JFMSE.2015.27.5.1380
  20. Levin, S.A. 1992. The problem of pattern and scale in ecology: the Robert H. MacArthur award lecture. Ecology 73(6): 1943-1967. https://doi.org/10.2307/1941447
  21. Lotze, H.K., H.S. Lenihan, B.J. Bourque, R.H. Bradbury, R.G. Cooke, M.C. Kay, S.M. Kidwell, M.X. Kirby, C.H. Peterson and J.B. Jackson. 2006. Depletion, degradation, and recovery potential of estuaries and coastal seas. Science 312(5781): 1806-1809. https://doi.org/10.1126/science.1128035
  22. Margalef, D.R. 1958. Information theory in ecology. International Journal of General Systems 3: 36-71.
  23. McNaughton, S.J. 1967. Relationships among functional properties of Californian grassland. Nature 216(5111): 168-169. https://doi.org/10.1038/216168b0
  24. Minshall, G.W. 1984. Aquatic insect-substratum relationships, p. 358-400. In: The Ecology of Aquatic Insects (Resh, V.H. and D.M. Rosenberg, eds.). Praeger Publishers: New York.
  25. Min, J.K. and D.S. Kong. 2020. Distribution patterns of benthic macroinvertebrate communities based on multispatial-scale environmental variables in the river systems of Republic of Korea. Journal of Freshwater Ecology 35(1): 323-347. https://doi.org/10.1080/02705060.2020.1815599
  26. MOE. 2016. Water quality monitoring program. The Ministry of Environment, Korea.
  27. MOE/NIER. 2016-2018. Survey and assessment of estuary ecosystem, The Ministry of Environment/National Institute of Environmental Research, Korea.
  28. Muylaert, K., K. Sabbe and W. Vyverman. 2009. Changes in phytoplankton diversity and community composition along the salinity gradient of the Schelde estuary (Belgium/The Netherlands). Estuarine, Coastal and Shelf Science 82(2): 335-340. https://doi.org/10.1016/j.ecss.2009.01.024
  29. NIER. 2016. Biomonitoring survey and assessment manual. National Institute of Environmental Research.
  30. Pielou, E.C. 1975. Ecological diversity. John Wiley Press, New York. p. 165.
  31. Rankin, E.T. 1991. The use of the qualitative habitat evaluation index for use attainability studies in streams and Rivers in Ohio. In George Gibson, editor. Biological Criteria: Research and Regulation, Office of Water, U.S. Environmental Protection Agency, Washington, D.C. EPA 440/5-91-005.
  32. Remane, A. and C. Schlieper. 1971. Biology of Brackish Water. E. Schweiserbart'sche Verlagsbuchhandlung, Stuttgart.
  33. Rho, P.H. and C.H. Lee. 2014. Spatial distribution and temporal variation of estuarine wetlands by estuary type. Journal of the Korean Geographical Society 49(3): 321-338.
  34. Shannon, C.E., W. Weaver and W.J. Weater. 1949. The mathematical theory of communication. University of Illinois Press, Urbana.
  35. Shokri, M.R. and W. Gladstone. 2013. Limitations of habitats as biodiversity surrogates for conservation planning in estuaries. Environmental Monitoring and Assessment 185(4): 3477-3492. https://doi.org/10.1007/s10661-012-2804-9
  36. Williams, D.D. and N.E. Williams. 1998. Aquatic insects in an estuarine environment: densities, distribution and salinity tolerance. Freshwater Biology 39(3): 411-421. https://doi.org/10.1046/j.1365-2427.1998.00285.x