• Title/Summary/Keyword: 하중-시간 이력

Search Result 193, Processing Time 0.037 seconds

Seismic Performance of Gravity-Load Designed Post-Tensioned Flat Plate Frames (중력하중으로 설계된 포스트텐션 플랫플레이트 골조의 내진성능)

  • Han, Sang-Whan;Park, Young-Mi;Rew, Youn-Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.3
    • /
    • pp.31-38
    • /
    • 2010
  • The purpose of this study is to evaluate the seismic performance of gravity-designed post tensioned (PT) flat plate frames with and without slab bottom reinforcement passing through the column. In low and moderate seismic regions, buildings are often designed considering only gravity loads. This study focuses on the seismic performance of gravity load designed PT flat plate frames. For this purpose, 3-, 6- and 9-story PT flat plate frames are designed considering only gravity loads. For reinforced concrete flat plate frames, continuous slab bottom reinforcement (integrity reinforcement) passing through the column should be placed to prevent progressive collapse; however, for the PT flat plate frames, the slab bottom reinforcement is often omitted since the requirement for the slab bottom reinforcement for PT flat plates is not clearly specified in ACI 318-08. This study evaluates the seismic performance of the model frames, which was evaluated by conducting nonlinear time history analyses. For conducting nonlinear time history analyses, six sets of ground motions are used as input ground motions, which represent two different hazard levels (return periods of 475 and 2475 years) and three different locations (Boston, Seattle, and L.A.). This study shows that gravity designed PT flat plate frames have some seismic resistance. In addition, the seismic performance of PT flat plate frames is significantly improved by the placement of slab bottom reinforcement passing through the column.

A New Detailed Assessment for Liquefaction Potential Based on the Liquefaction Driving Effect of the Real Earthquake Motion (실지진하중의 액상화 발생특성에 기초한 액상화 상세평가법)

  • 최재순;강한수;김수일
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.5
    • /
    • pp.145-159
    • /
    • 2004
  • The conventional method for assessment of liquefaction potential proposed by Seed and Idriss has been widely used in most countries because of simplicity of tests. Even though various data such as stress, strain, stress path, and excess pore water pressure can be obtained from the dynamic test, especially, two simple experimental data such as the maximum deviatoric stress and the number of cycles at liquefaction have been used in the conventional assessment. In this study, a new detailed assessment for liquefaction potential to reflect both characteristics of real earthquake motion and dynamic soil resistance is proposed and verified. In the assessment, the safety factor of the liquefaction potential at a given depth of a site can be obtained by the ratio of a resistible cumulative plastic shear strain determined through the performance of the conventional cyclic test and a driving cumulative plastic shear strain calculated from the shear strain time history through the ground response analysis. The last point to cumulate the driving plastic shear strain to initiate soil liquefaction is important for this assessment. From the result of cyclic triaxial test using real earthquake motions, it was concluded that liquefaction under the impact-type earthquake loads would initiate as soon as a peak loading signal was reached. The driving cumulative plastic shear strain, therefore, can be determined by adding all plastic shear strains obtained from the ground response analysis up to the peak point. Through the verification of the proposed assessment, it can be concluded that the proposed assessment for liquefaction potential can be a progressive method to reflect both characteristics of the unique soil resistance and earthquake parameters such as peak earthquake signal, significant duration time, earthquake loading type, and magnitude.

Evaluation of the Shock Resistance of a Gas Turbine Package (가스터빈 패키지 내충격 성능평가에 관한 연구)

  • Kim, Jae Boo;Park, Yun Ki;Park, Min Seok;Lee, Jong Hwan;An, Sung Chan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.10
    • /
    • pp.1005-1009
    • /
    • 2017
  • In this study, the shock resistance of a gas turbine package subjected to a shock load caused by non-contact underwater explosion was investigated using numerical analysis. To perform shock analysis, the time-history shock load was calculated according to BV-043 (German Navy Regulation). The direct transient response analysis in the time domain for the simplified Whole Engine Model (WEM) was performed using the calculated shock load. In addition, the structural integrity of a detailed model was evaluated by considering the shock load transferred to each component. As a result, it was confirmed that the safety factor was at least 1.0 as compared with the reference stress. Finally, the structural and functional integrity of the Engine Management System (EMS) of the gas turbine package was verified through an actual shock test.

Design of Unbend Braces to Satisfy Given Performance Acceptance Criteria (성능수준 만족을 위한 가새헝 소성 감쇠기의 설계)

  • 김진구;김유경;최현훈
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.6
    • /
    • pp.47-54
    • /
    • 2001
  • Unbond brace hysteretic dampers are generally used to prevent or decrease structural damage in building structures subjected to strong earthquake by its energy dissipating hysteretic behavior. In the study, a straightforward design procedure for unbond brace hysteretic dampers was developed. The required amount of equivalent damping to satisfy given performance acceptance criteria was obtained conveniently based on the capacity spectrum method without carrying out time-consuming nonlinear dynamic time history analysis. Then the size of the unbond braces is determined from the required equivalent damping. Parametric study has been performed for the design variables such as natural period, yield strength, the stiffness after the first yield stress of the unbond brace. The procedure was applied to 5-story and 10-story steel frames for verification of the proposed method. According to the earthquake time history analysis results, the maximum displacement of the model structure with unbond braces supplied in accordance with the proposed method corresponds well with the given target displacement.

  • PDF

Evaluation of Nonlinear Seismic Performance Using Equivalent Responses of Multistory Building Structures (대표응답을 이용한 건축구조물의 비선형 지진응답 분석 및 내진성능평가)

  • 이동근;최원호
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.6
    • /
    • pp.65-76
    • /
    • 2001
  • Determination of ductility demand and prediction of nonlinear seismic responses of a structure under the earthquake ground motions have become a very important subject for evaluation of seismic performance in the performance based seismic design. In this study, the system ductility demand and nonlinear seismic responses of the steel moment framed structures by the nonlinear time history analysis are estimated and compared with those obtained from the capacity spectrum method suggested in ATC-40 and proposed method that is an improvement on the capacity spectrum method using the equivalent responses derived directly from a multi degree of freedom system. the adequacy and validity of the proposed method is verified by comparing the results evaluated by the method proposed in this study and the results obtained from method suggested in ATC-40 to the nonlinear seismic responses of the example structures from the nonlinear time history analysis.

  • PDF

Evaluation of The Nonlinear Seismic Behavior of a Biaxial Hollow Slab (2방향 중공슬래브 구조시스템의 비선형 지진거동 평가)

  • Park, Yong-Koo;Kim, Hyun-Su;Ko, Hyun;Park, Hyun-Jae;Lee, Dong-Guen
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.1-10
    • /
    • 2011
  • Recently, there has been an increased interest in the noise isolation capacity of floor slabs, and thus an increase of slab thickness is required. In addition, long span floor systems are frequently used for efficient space use of building structures. In order to satisfy these requirements, a biaxial hollow slab system has been developed. To verify the structural capacity of a biaxial hollow slab system, safety verification against earthquake loads is essential. Therefore, the seismic behavior of a biaxial hollow slab system has been investigated using material nonlinear time history analyses. For efficient time history analyses, the equivalent plate element model previously proposed was used and the seismic capacity of the example structure having a biaxial hollow slab system has been evaluated using the nonlinear finite element model developed by the equivalent frame method. Based on analytical results, it has been shown that the seismic capacity of a biaxial hollow slab system is not worse than that of a flat plate slab system with the same thickness.

Dynamic response of rotor-bearing systems under seismic excitations (지진 하중을 받고 있는 회전축-베어링 시스템의 동적 거동에 관한 연구)

  • 김기봉;김양한
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.5
    • /
    • pp.992-1002
    • /
    • 1988
  • The dynamic response of rotor-bearing systems subjected to six-component nonststionary earthquake ground accelerations is analyzed. The governing equations of motion for the rotor are derived using Lagrangian approach. The six-component earthquake inputs result in both inhomogeneous and parametric excitations, so that the conventional spectral analysis of random vibration is not applicable. The method of Monte Carlo simulation is utilized to simulate the six-component nonstationary earthquake ground motions and to determine the response statistics of rotor-bearing systems. The significant influences due to rotational motions of seismic base on the overall structural response is demonstrated by a numerical example.

Dynamic Behaviors of a Corrugated Steel Tunnel Lining System due to Wind Loads by Passing Vehicles according to the Boundary Conditions (구조물 경계조건에 따른 파형강판 터널라이닝의 풍하중에 대한 동적 거동분석)

  • Mha, Ho-Seong;Cho, Kwang-Il;Yoo, Sung-Heum
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.1
    • /
    • pp.47-58
    • /
    • 2012
  • Dynamic behaviors of a corrugated steel plate tunnel lining system are examined under wind loads due to passing vehicles. Applied wind loads are simulated by applying the time functions as a vehicle moves through the tunnel. Wind loads are described by the pressure and suction as a vehicle arrives and leaves target positions in the tunnel. The tunnel lining is modeled using the simplified shell elements that retain the characteristics of the corrugated shapes. The displacements of the tunnel lining are evaluated under various conditions regarding wind velocity and the passing vehicles. The responses are found to increase as the vehicle velocity and wind velocity increase. A maximum displacement of 25mm occurs when two vehicles are crossing at the speed of 120km/h. A row of vehicles running consecutively minimally affects the dynamic responses with less than 2.5% of the dynamic responses enlarged and attributed to one running vehicle. It should be noted that the dynamic responses of the tunnel lining should be considered when there is no shotcrete applied.

Quasi Static Fatigue Analysis of Spot Welding Component considering Change of Stiffness (강성변화를 고려한 점용접부의 준정적피로해석)

  • Lee, Dong-Cheol;Jeong, Heon Sul;Kang, Ki-Weon
    • Journal of the Korea Convergence Society
    • /
    • v.4 no.2
    • /
    • pp.21-27
    • /
    • 2013
  • Spot welding is automation of assembly process, without increasing the vehicle weight and economy, there is a fuel economy improvement of motor vehicles and to widely used in the automotive industry. But By irregular load from the road surface while at the vehicle is running, stress concentration occurs in the weld point, fatigue failure occurs frequently. Considering change of stiffness is the essential fatigue life of the evaluation spot weld. In this paper, by performing a linear static analysis was to understand the vulnerable part. Acquire to the fatigue properties of the spot weld, take the load history of the three levels in the time domain, was performed by setting as a condition of quasi-static fatigue analysis. and Fatigue life prediction method of the spot weld was by applying the method according to the fatigue damage accumulation and the conventional method was compared analyzed with the results shown.

Seismic Performance of Gravity-Load Designed Post-Tensioned Flat Plate Frames (중력하중으로 설계된 포스트텐션 플랫플레이트 골조의 내진성능)

  • Park, Young-Mi;Rew, Youn-Ho;Han, Sang-Whan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.127-128
    • /
    • 2010
  • The purpose of this study is to evaluate the seismic performance of gravity-designed post tensioned (PT) flat plate frames with and without slab bottom reinforcement passing through the column. For the PT flat plate frames, the slab bottom reinforcement is often omitted since the requirement for the slab bottom reinforcement for PT flat plates is not clearly specified in ACI 318-08. This study evaluates the seismic performance of the model frames was evaluated by conducting nonlinear time history analysis. The seismic performance of PT flat plate frames is significantly improved by placing slab bottom reinforcement passing through the column.

  • PDF