• Title/Summary/Keyword: 하중재하 실험

Search Result 661, Processing Time 0.023 seconds

Analysis for Bearing Capacity of Paper Ash in Industrial Waste as Filling Material (성토재로서 산업폐기물 제지회의 지지력 분석)

  • Lee, Cheo-Keun;Ahn, Kwang-Kuk;Heo, Yol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.2 no.2
    • /
    • pp.13-22
    • /
    • 2001
  • In this study, centrifuge model tests were fulfilled to investigate the characteristics of bearing capacity of paper ash as a filling material. The model tests were done varying the footing width and gravity level. The settlement and vertical soil pressure by loading were measured. The results from the tests were compared with the one from FLAC program using finite difference method and bearing capacity theory. After all, it was shown that the characteristics of load-settlement represented the local shear failure, which the settlement ratio s/B showed inflection point around 25~30%. As g-level and footing width were increasing, the load strength was increasing. The ultimate bearing capacity from the tests was very closed the results from Terzaghi's theory. As the distance from footing center was increasing, the vertical soil pressure was decreasing. If E/B is higher than 7, the stress by loading was almost increasing. The vertical displacement from loading was the largest one around under the footing and was almost occurred when the depth>4cm and E/B is higher than 5.0.

  • PDF

지반하중조건에 따른 숏크리트 거동의 수치해석적 검증

  • Yu, Gwang-Ho;Jeong, Ji-Seong;Park, Yeon-Jun
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2007.10a
    • /
    • pp.365-374
    • /
    • 2007
  • 본 논문은 터널의 지반-지보재 상호 거동을 규명하기 위한 연구로서 주지보재인 숫크리트의 균열, 파괴하중 및 변형거동을 실물크기의 갱도모형실험을 통해 확인하고 3차원 수치 해석을 실시하여 각각의 결과를 비교 검증하였다. 갱도모형 실험은 실제 터널과 유사한 크기의 터널을 제작하여 11개 실린더에서 측압조건에 따라 하중을 가하여 실험을 수행하였다. 3차원 수치해석 모델링은 갱도모형실험과 가능하면 같은 조건으로 해석하기 위하여 모형실험으로부터 로드셀 및 LVDT를 통해 얻은 하중-변위곡선이 수치해석 시에도 재현되도록 하여 수행되었다.

  • PDF

A Study on Strength Prediction of Mechanical Joint of Composite under Bending Load (굽힘 하중을 받는 복합재 기계적 체결부의 강도예측에 관한 연구)

  • Baek, Seol;Kang, Kyung-Tak;Lee, Jina;Chun, Heoung-Jae
    • Composites Research
    • /
    • v.27 no.6
    • /
    • pp.213-218
    • /
    • 2014
  • This paper predicted the strength of mechanical joint of composites under bending load by means of the characteristic curve method. The method has been employed only for tensile and compression load conditions, but in this study, this method was extended to the bending load condition. For the finite element analysis (FEA), the nonlinear analysis was conducted considering the contact and friction effects between composite material and pin. The failure strength and mode on characteristic curve were evaluate with Tsai-Wu failure theory. To validate the results of FEA, the experiments were conducted to find out the failure load by applying bending moment on the composite specimens. The results showed reasonable agreements with theoretical results. These results lead to a conclusion that the characteristic curve method can be applied to predict the bending strength of mechanical joint of composites.

Performance Evaluation of Long Span Bridge Columns Strengthened with High-Performance Glass Fiber (고성능 유리섬유로 보강된 해상장대교량 교각의 보강성능평가)

  • Chang, Chun-Ho;Jang, Kwang-Seok;Lee, Jae-Uk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.16 no.1
    • /
    • pp.125-133
    • /
    • 2010
  • Researches and studies which have been conducted so far on external confinement of long span concrete columns have mainly concentrated on concentric loading. But, long span bridge concrete columns over the sea are mainly subjected to concentrated axial load, and at the same time lange amount of moment by eccentric load. This paper experimentally investigates the performance of externally confined high-strength concrete columns subjected to loading mechanism and evaluates the effectiveness of two confinement materials carbon fibre and high performance glass fibre. Twelve short columns with the same dimensions were cast and tested Six columns were reinforced with hoop bars, the remaining six columns were reinforced with spiral bars and wrapped with three layers of carbon failure and high performance glass FRP sheets. Test variables considered were the shape of internal reinforcement and strengthening materials according to loading location. The experimental results showed that eccentric load could obviously lower down the maximum failure load of FRP-confined concrete columns, compared with the columns under concentric load. And compared with the carbon FRP-confined reinforced concrete columns, high performance glass FRP-confined columns displayed a higher load capacity and ductility, when tested both concentrically and eccentrically.

A Modified Parallel Iwan Model for Cyclic Hardening Behavior of Sand(II) : Verification (수정 IWAN 모델을 이용한 사질토의 반복경화거동에 대한 연구(II) : 모델 검증)

  • 이진선;김동수;추연욱;윤종구
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.5
    • /
    • pp.57-66
    • /
    • 2003
  • In order to verify the applicability of the developed modified parallel IWAN model. two types of cyclic torsional shear tests were performed using Kum-Kang and Toyoura sands. One was a symmetric-limit loading test and the other was an irregular loading test. Model parameters were derived from the symmetric limit loading tests at various relative densities and confining pressures. The modified parallel IWAN model can predict the cyclic hardening behavior of sands very well as increasing loading cycles in the symmetric-limit tests. Irregular loading tests were performed using the loading shape suggested by Pyke(1979). Cyclic behaviors under irregular loading were simulated using model parameters derived from symmetric limit loading test results of similar loading conditions. The predicted cyclic hardening behaviors under irregular loading matched well with experimental results and the applicability of the proposed model was verified.

Crippling Test of Z-section Graphite/Epoxy Stringers (Z-단면 Graphite/Epoxy 스트링거의 크리플링 실험)

  • 최상민;권진희
    • Composites Research
    • /
    • v.14 no.3
    • /
    • pp.32-41
    • /
    • 2001
  • Z-section composite stringers with various lengths and flange-widths are tested in axial compression for the validation of a finite element algorithm to calculate the buckling and crippling stresses of composite laminated stringers. The stacking sequence considered is $[{\pm}45/0/90]s$. Strain gages are attached to each specimen, and deflection and end-shortening are obtained by two LVDTs. The buckling load is determined from the load vs. strain response, load vs. end-shortening curves, and load vs. out-of-plane deflection curves. The ultimate stress after local buckling is used as the crippling stress. Comparison between finite element and experimental results shows good agreement in the local buckling and crippling stresses.

  • PDF

Laboratory Test of CLSM with Botton Ash (Bottom ash를 이용한 유동성 뒤채움재의 실내모형실험)

  • Lee, Kwan-Ho;Lee, Kyung-Joong;KIm, Yun-Tae;Cho, Jae-Yun
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.197-197
    • /
    • 2011
  • 최근 들어 전력 사용량의 증가로 인한 화력발전소의 부산물인 석탄회 중 바텀애시와 각종 공공사업과 관련하여 해마다 현장발생토의 발생량이 지속적으로 증가하고 있는 추세이다. 바텀애시와 현장발생토사를 효과적으로 재활용하는 방법 중 유동성 뒤채움재를 개발하여 활용하는 방안을 모색하기 위한 연구이다. SP로 분류된 흙 현장발생토와 서천 화력발전소에서 발생하는 석탄회 중 입경이 0.9~1.5mm의 바텀애시만을 선별하여 현장발생토와 바텀애시의 비율을 7 : 3으로 변환한 최적배합을 선정하여 강재로 제작된 가로 80cm, 세로 60cm, 높이 90cm의 모형토조를 이용하여 실험을 진행하였으며, 사용상 지하 매설이 되는 관의 거동 특성은 확인하기 위하여 내경 30cm, 두께 8mm의 연선관 중 하나인 PVC관을 원형지하매설관으로 선정하여 배합을 타설하는 과정과 타설 후 7일간의 양생기간을 거친 후 차량하중으로 가정할 수 있는 하중을 가하여 원형지하매설관의 관외부에서 수직방향과 수평방향의 토압과 관내부의 수직 수평방향 변위 그리고 관 자체의 횡 종단 변형을 측정하여 원형지하매설관의 거동특성을 파악하였다. 타설시 지하매설관은 유동성 뒤채움재의 특성으로 인하여 시간이 지남에 따라 안정화되는 것을 확인할 수 있었으며, 최대하중을 3300kgf로 하여 하중 재하 후 지하매설관의 거동특성은 대체적으로 일반 모래를 사용하여 실험한 값보다 적은 변형 특성을 보이고 있으나 수평토압의 경우 일반적인 흙의 변형과 전혀 상이한 결과값을 보이는 경우도 있어 추가적인 실험 및 고찰의 필요하다. 본 실험에서 사용한 최적배합비 이외의 배합으로 같은 실험을 수행하여 바텀애시 량의 가감 및 재활용 재료인 폐타이어 고무칩등을 첨가한 실험을 계획하고 있으며 추후 실내시험과 모형실험을 토대로 유한요소해석을 추가로 시행하여 실험값과 해석값의 비교를 할 예정이다.

  • PDF

Model Tests on the Behavior of Geogrid Reinforced Soil Walls with Vertical Spacing of Reinforcement Layers (보강재 설치 간격에 따른 지오그리드 보강토옹벽의 변형거동에 관한 모형실험)

  • 조삼덕;안태봉;이광우;오세용
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.5
    • /
    • pp.109-116
    • /
    • 2004
  • The model tests are conducted to assess the behavior characteristics of geogrid reinforced soil walls according to different surcharge pressures and reinforcement spacings. The models are built in the box having dimension, 100cm tall, 140cm long, and 100cm wide. The reinforcement used is geogrid(tensile strength 2.26t/m). Decomposed ganite soil(SM) is used as a backfill material. The strain gauges and LVDTs are Installed to obtain the strain in the reinforcements and the displacements of the wall face. From the results, it can be concluded that the more the reinforcement tensile strength increases, the more the wall displacements and the geogrid strains decreases. The maximum wall displacements and geogrid strains of the model walls occur due to the uniform surcharge pressure at the 0.7H from the bottom of the wall. The horizontal displacements of the wall face nonlinearly increase with the increase of surcharge pressures, and this nonlinear behavior is significantly presented for larger surcharge due to the nonlinear tensile strength-strain relationship of the reinforcements.

Tensile Load Transmission Capacity of H-shaped Beam by Stud Connectors (스터드 커넥터로 연결된 H형강보의 인장하중 전달성능)

  • Lee, Myung Jae;Choi, Wan Chol;Kim, Won Ki;Kim, Jae Hee;Lee, Sang Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.2 s.69
    • /
    • pp.267-274
    • /
    • 2004
  • The objective of this study is to evaluate tensile load transmission capacity of H-shaped beam about design load by stud connector. The basic test of stud connecter was conducted and two specimens of full-scale size were tested under monotonic tensile loading condition. The parameter of tests is the size of the H-shaped beams. The results show that tensile load transmission capacity of H-shape beam about design load by stud connectors is excellent observing to the design code of steel structures of Architectural Institute of Korea.

The Response of Buried Flexible pipe due to Surcharge Load and Uplifting Force. (상재하중 및 인발하중으로 인한 식중매설연성관의 거동 특성)

  • 권호진;정인준
    • Geotechnical Engineering
    • /
    • v.3 no.3
    • /
    • pp.31-48
    • /
    • 1987
  • The vertical pressure due to soil prism load and surface surcharge load acts on buried pipe, and occasionally uplifting force due to earthquake or differential settlement acts on it. In this paper, study was performed to estimate the pressure acting on the buried pipe due to soil prism load through analyzing Marston-Spangler theory by new method. And loading tests on the buried flexible pipe were performed to study on the response of the pipe due to surface surcharge load. Also, through the estimation of uplifting resistance theory and uplifting test for buried pipe, the method to determine the maximum uplifting resistance of buried pipe was proposed.

  • PDF